viernes, 31 de agosto de 2012

Memoria Ram
Introducción
Bueno , es necesario recalcar que debido a la naturaleza de nuestro trabajo , se nos hizo necesario separar los temas a analizar ( Memorias RAM y USB ).
La Idea fue precisamente mezclar estos dos temas pero no revolverlos .
USB Universal Serial Bus es una interfase plug&play entre la PC y ciertos dispositivos tales como teclados, mouses, scanner, impresoras, módems, placas de sonido, camaras,etc) .
Memoria RAM (Random Access Memory) Memoria de Acceso Aleatorio) es donde el computador guarda los datos que está utilizando en el momento presente. El almacenamiento es considerado temporal por que los datos y programas permanecen en ella mientras que la computadora este encendida o no sea reiniciada.
¿ Qué es... la memoria RAM?
La memoria principal o RAM (Random Access Memory, Memoria de Acceso Aleatorio) es donde el computador guarda los datos que está utilizando en el momento presente. El almacenamiento es considerado temporal por que los datos y programas permanecen en ella mientras que la computadora este encendida o no sea reiniciada.
Se le llama RAM por que es posible acceder a cualquier ubicación de ella aleatoria y rápidamente
Físicamente, están constituidas por un conjunto de chips o módulos de chips normalmente conectados a la tarjeta madre. Los chips de memoria son rectángulos negros que suelen ir soldados en grupos a unas plaquitas con "pines" o contactos:
   La diferencia entre la RAM y otros tipos de memoria de almacenamiento, como los disquetes o los discos duros, es que la RAM es mucho más rápida, y que se borra al apagar el computador, no como los Disquetes o discos duros en donde la información permanece grabada.
Tipos de RAM
Hay muchos tipos de memorias DRAM, Fast Page, EDO, SDRAM, etc. Y lo que es peor, varios nombres. Trataremos estos cuatro, que son los principales, aunque mas adelante en este Informe encontrará prácticamente todos los demás tipos.
  • DRAM: Dinamic-RAM, o RAM DINAMICA, ya que es "la original", y por tanto la más lenta.
  • Usada hasta la época del 386, su velocidad típica es de 80 ó 70 nanosegundos (ns), tiempo éste que tarda en vaciarse para poder dar entrada a la siguiente serie de datos. Por ello, es más rápida la de 70 ns que la de 80 ns.
  • Físicamente, aparece en forma de DIMMs o de SIMMs, siendo estos últimos de 30 contactos.
  • Fast Page (FPM): a veces llamada DRAM (o sólo "RAM"), puesto que evoluciona directamente de ella, y se usa desde hace tanto que pocas veces se las diferencia. Algo más rápida, tanto por su estructura (el modo de Página Rápida) como por ser de 70 ó 60 ns.
  • Usada hasta con los primeros Pentium, físicamente aparece como SIMMs de 30 ó 72 contactos (los de 72 en los Pentium y algunos 486).
  • EDO: o EDO-RAM, Extended Data Output-RAM. Evoluciona de la Fast Page; permite empezar a introducir nuevos datos mientras los anteriores están saliendo (haciendo su Output), lo que la hace algo más rápida (un 5%, más o menos).
  • Muy común en los Pentium MMX y AMD K6, con velocidad de 70, 60 ó 50 ns. Se instala sobre todo en SIMMs de 72 contactos, aunque existe en forma de DIMMs de 168.
  • SDRAM: Sincronic-RAM. Funciona de manera sincronizada con la velocidad de la placa (de 50 a 66 MHz), para lo que debe ser rapidísima, de unos 25 a 10 ns. Sólo se presenta en forma de DIMMs de 168 contactos; es usada en los Pentium II de menos de 350 MHz y en los Celeron.
  • PC100: o SDRAM de 100 MHz. Memoria SDRAM capaz de funcionar a esos 100 MHz, que utilizan los AMD K6-2, Pentium II a 350 MHz y computadores más modernos; teóricamente se trata de unas especificaciones mínimas que se deben cumplir para funcionar correctamente a dicha velocidad, aunque no todas las memorias vendidas como "de 100 MHz" las cumplen.
  • PC133: o SDRAM de 133 MHz. La más moderna (y recomendable).
 SIMMs y DIMMs
Se trata de la forma en que se juntan los chips de memoria, del tipo que sean, para conectarse a la placa base del ordenador. Son unas plaquitas alargadas con conectores en un extremo; al conjunto se le llama módulo.
El número de conectores depende del bus de datos del microprocesador, que más que un autobús es la carretera por la que van los datos; el número de carriles de dicha carretera representaría el número de bits de información que puede manejar cada vez.
  • SIMMs: Single In-line Memory Module, con 30 ó 72 contactos. Los de 30 contactos pueden manejar 8 bits cada vez, por lo que en un 386 ó 486, que tiene un bus de datos de 32 bits, necesitamos usarlos de 4 en 4 módulos iguales. Miden unos 8,5 cm (30 c.) ó 10,5 cm (72 c.) y sus zócalos suelen ser de color blanco.
Los SIMMs de 72 contactos, más modernos, manejan 32 bits, por lo que se usan de 1 en 1 en los 486; en los Pentium se haría de 2 en 2 módulos (iguales), porque el bus de datos de los Pentium es el doble de grande (64 bits).
  • DIMMs: más alargados (unos 13 cm), con 168 contactos y en zócalos generalmente negros; llevan dos muescas para facilitar su correcta colocación. Pueden manejar 64 bits de una vez, por lo que pueden usarse de 1 en 1 en los Pentium, K6 y superiores. Existen para voltaje estándar (5 voltios) o reducido (3.3 V).
Y podríamos añadir los módulos SIP, que eran parecidos a los SIMM pero con frágiles patitas soldadas y que no se usan desde hace bastantes años, o cuando toda o parte de la memoria viene soldada en la placa (caso de algunos ordenadores de marca).
 Otros tipos de RAM
  • BEDO (Burst-EDO): una evolución de la EDO, que envía ciertos datos en "ráfagas". Poco extendida, compite en prestaciones con la SDRAM.
  • Memorias con paridad: consisten en añadir a cualquiera de los tipos anteriores un chip que realiza una operación con los datos cuando entran en el chip y otra cuando salen. Si el resultado ha variado, se ha producido un error y los datos ya no son fiables.
    Dicho así, parece una ventaja; sin embargo, el ordenador sólo avisa de que el error se ha producido, no lo corrige. Es más, estos errores son tan improbables que la mayor parte de los chips no los sufren jamás aunque estén funcionando durante años; por ello, hace años que todas las memorias se fabrican sin paridad.
  • ECC: memoria con corrección de errores. Puede ser de cualquier tipo, aunque sobre todo EDO-ECC o SDRAM-ECC. Detecta errores de datos y los corrige; para aplicaciones realmente críticas. Usada en servidores y mainframes.
  • Memorias de Vídeo: para tarjetas gráficas. De menor a mayor rendimiento, pueden ser: DRAM -> FPM -> EDO -> VRAM -> WRAM -> SDRAM -> SGRAM
DDR-SDRAM: (Doble Data Rate)
¿Cómo es físicamente la DDR-SDRAM? O lo que es lo mismo: ¿puedo instalarla en mi "antigua" placa base? Lamentablemente, la respuesta es un NO rotundo.
Los módulos de memoria DDR-SDRAM (o DDR) son del mismo tamaño que los DIMM de SDRAM, pero con más conectores: 184 pines en lugar de los 168 de la SDRAM normal.
Además, los DDR tienen 1 única muesca en lugar de las 2 de los DIMM "clásicos".
Los nuevos pines son absolutamente necesarios para implementar el sistema DDR, por no hablar de que se utiliza un voltaje distinto y que, sencillamente, tampoco nos serviría de nada poder instalarlos, porque necesitaríamos un chipset nuevo.
Hablando del voltaje: en principio debería ser de 2,5 V, una reducción del 30% respecto a los actuales 3,3 V de la SDRAM.
¿Cómo funciona la DDR-SDRAM?
Consiste en enviar los datos 2 veces por cada señal de reloj, una vez en cada extremo de la señal (el ascendente y el descendente), en lugar de enviar datos sólo en la parte ascendente de la señal.
De esta forma, un aparato con tecnología DDR que funcione con una señal de reloj "real", "física", de por ejemplo 100 MHz, enviará tantos datos como otro sin tecnología DDR que funcione a 200 MHz. Por ello, las velocidades de reloj de los aparatos DDR se suelen dar en lo que podríamos llamar "MHz efectivos o equivalentes" (en nuestro ejemplo, 200 MHz, "100 MHz x 2").
Uno de los problemas de la memoria Rambus: funciona a 266 MHz "físicos" o más, y resulta muy difícil (y cara) de fabricar.
La tecnología DDR está de moda últimamente, bajo éste u otro nombre. Además de las numerosísimas tarjetas gráficas con memoria de vídeo DDR-SDRAM, tenemos por ejemplo los microprocesadores AMD Athlon y Duron, cuyo bus de 200 MHz realmente es de "100 x 2", "100 MHz con doble aprovechamiento de señal"; o el AGP 2X ó 4X, con 66 MHz "físicos" aprovechados doble o cuádruplemente, ya que una tarjeta gráfica con un bus de 266 MHz "físicos" sería difícil de fabricar... y extremadamente cara.
(Atención, esto no quiere decir que una tarjeta AGP 4X sea en la realidad el doble de rápida que una 2X, ni mucho menos: a veces se "notan" IGUAL de rápidas, por motivos que no vienen al caso ahora.)
Bien, pues la DDR-SDRAM es el concepto DDR aplicado a la memoria SDRAM. Y la SDRAM no es otra que nuestra conocida PC66, PC100 y PC133, la memoria que se utiliza actualmente en casi la totalidad de los PCs normales; los 133 MHz de la PC133 son ya una cosa difícil de superar sin subir mucho los precios, y por ello la introducción del DDR.
 Tipos de DDR-SDRAM y nomenclatura
Por supuesto, existe memoria DDR de diferentes clases, categorías y precios.
Lo primero, puede funcionar a 100 o 133 MHz (de nuevo, "físicos"); algo lógico, ya que se trata de SDRAM con DDR, y la SDRAM funciona a 66, 100 ó 133 MHz (por cierto, no existe DDR a 66 MHz). Si consideramos los MHz "equivalentes", estaríamos ante memorias de 200 ó 266 MHz.
En el primer caso es capaz de transmitir 1,6 GB/s (1600 MB/s), y en el segundo 2,1 GB/s (2133 MB/s). Al principio se las conocía como PC200 y PC266, siguiendo el sistema de clasificación por MHz utilizado con la SDRAM. Pero llegó Rambus y decidió que sus memorias se llamarían PC600, PC700 y PC800, también según el sistema de los MHz. Como esto haría que parecieran muchísimo más rápidas que la DDR (algo que NO SUCEDE, porque funcionan de una forma completamente distinta), se decidió denominarlas según su capacidad de transferencia en MB/s: PC1600 y PC2100 (PC2133 es poco comercial, por lo visto).
2.1- ¿Cuánta memoria debo tener?
Se podría decir que: cuanta más memoria RAM, mejor. Claro está que la memoria RAM vale dinero, así que se intentara llegar a un compromiso satisfactorio, pero nunca quedándose cortos. Ante todo, de todas formas no nos podemos quejar en los precios: hasta antes del 1996 el costo de la memoria había mantenido un costo constante de alrededor de US 40 por megabyte . A finales de 1996 los precios se habían reducido a US 4 el megabyte (una caída del 901% en menos de un año). Hoy en día la memoria RAM está a menos de US 1 por megabyte.
La cantidad de RAM necesaria es función únicamente de para qué se use un ordenador, lo que condiciona a qué sistema operativo y programas se van a usar, se recomienda una cantidad mínima de 64 MB de RAM, y si es posible incluso 128.
¿Cuánta memoria es "suficiente"?
En el mundo de los computadores, la duda siempre parece estar en si comprar un microprocesador Intel o AMD, en si será un Pentium III o un Athlon, un Celeron o un K6-2, y a cuántos MHz funcionará. Cuando se llega al tema de la memoria, la mayor parte de los compradores aceptan la cantidad que trae el sistema por defecto, lo que puede ser un gran error.
  Lo más importante al comprar un computador es que sea equilibrado; nada de 800 MHz para sólo 32 MB de memoria RAM, o una tarjeta 3D de alta gama para un monitor pequeño y de mala calidad. Y como intentaremos demostrar, la cantidad de memoria del PC es uno de los factores que más puede afectar al rendimiento.
Por cierto, este trabajo se centrará en Windows 95 y 98, ya que son con diferencia los sistemas operativos más utilizados. Los resultados son perfectamente aplicables a Linux, "excepto" por su mayor estabilidad y mejor aprovechamiento de la memoria; en cuanto a Windows NT 4 y 2000, actúan de forma similar a Linux, si bien consumen entre 16 y 40 MB más de memoria que los Windows "domésticos".
Windows y la memoria virtual
Por supuesto, cuantos más programas utilicemos y más complejos sean, más memoria necesitaremos; esto seguro que no sorprenderá a nadie, pero lo que sí puede que nos sorprenda es la gran cantidad de memoria que se utiliza tan sólo para arrancar el sistema operativo. Observen los siguientes datos:
Programas cargados
RAM utilizada
Sólo Windows 95
21 MB
Sólo Windows 98
27 MB
Sólo Windows 98, tras varios meses de funcionamiento y diversas instalaciones de programas
35 MB
Windows 98, Microsoft Word 97 e Internet Explorer 4
46 MB
Windows 98 y AutoCAD 14 (con un dibujo sencillo en 2D)
55 MB
Como puede ver, sólo la carga del sistema operativo puede consumir TODA la memoria con la que se venden algunos computadores de gama baja. Además, Windows 98 utiliza más memoria que Windows 95 debido entre otros temas a su integración con Microsoft Internet Explorer. Para terminar de complicar el tema, ambos Windows tienden a aumentar su tamaño y su consumo de memoria según vamos instalando programas, o sencillamente según pasa el tiempo, sin instalar nada.
Pese a esto, el hecho es que los computadores siguen trabajando cuando se les agota la memoria RAM, algo que sería imposible si no fuera por la denominada "memoria virtual", que no es sino espacio del disco duro que se utiliza como si fuera memoria RAM.
Sin embargo, esta memoria virtual tiene varios inconvenientes; el principal es su velocidad, ya que es muchísimo más lenta que la RAM. Mientras la velocidad de acceso a la RAM se mide en nanosegundos (ns, la 0,000000001 parte de un segundo), la de los discos duros se mide en milisegundos; es decir, que se tarda casi un millón de veces más en acceder a un dato que encuentra en el disco duro que a uno de la RAM.
Por ende, lo ideal es necesitar lo menos posible la memoria virtual, y para eso evidentemente hay que tener la mayor cantidad de memoria RAM posible.
 Actualizar la memoria RAM
1.- Identificar el tipo de memoria que utiliza su ordenador. La fuente más apropiada de información a este respecto es el manual de la placa base, aunque en general:
MICROPROCESADOR
MEMORIA TÍPICA
NOTAS
386
DRAM o FPM en módulos SIMM de 30 contactos, de unos 100 u 80 ns
Memoria difícil de encontrar, actualización poco interesante
486 lentos
FPM en módulos SIMM de 30 contactos, de 80 ó 70 ns
Típico de DX-33 o velocidades inferiores
486 rápidos
Pentium lentos
FPM en módulos SIMM de 72 contactos, de 70 ó 60 ns, a veces junto a módulos de 30 contactos
Típico de DX2-66 o superiores y Pentium 60 ó 66 MHz
Pentium
FPM o EDO en módulos SIMM de 72 contactos, de 70 ó 60 ns

Pentium MMX
AMD K6
EDO en módulos SIMM de 72 contactos, de 60 ó 50 ns

Celeron
Pentium II hasta 350 MHz
SDRAM de 66 MHz en módulos DIMM de 168 contactos, de menos de 20 ns
Suelen admitir también PC100 o PC133; también en algunos K6-2
Pentium II 350 MHz o más
Pentium III
AMD K6-2
AMD K6-III
AMD K7 Athlon
SDRAM de 100 MHz (PC100) en módulos DIMM de 168 contactos, de menos de 10 ns
Aún muy utilizada; suelen admitir también PC133
Pentium III Coppermine
(de 533 MHz o más)
AMD K7 Athlon
AMD Duron
SDRAM de 133 MHz (PC133) en módulos DIMM de 168 contactos, de menos de 8 ns
La memoria más utilizada en la actualidad
Consejos para comprar Memoria
Lo primero, su tamaño: actualmente nadie en su sano juicio debería instalar menos de 64 MB, siendo mucho mejor 128 MB o incluso más si se trata de CAD en 3D o diseño gráfico. En cuanto al tipo: ¿SDRAM o RDRAM (Rambus DRAM)? Sin ninguna duda, siempre SDRAM; la Rambus es carísima y su rendimiento es sólo un poco mayor.
Una vez decididos por la SDRAM, elijamos su velocidad: la memoria SDRAM más exigente es la PC133 (SDRAM a 133 MHz), necesaria para montar los modernos ordenadores Pentium III con bus de 133 MHz y los Athlon en placa KX133. Pida de esta velocidad y pague lo que sea (generalmente sólo un poco más); aunque por ahora no la necesite (caso de los Celeron, K6-2, la mayoría de Athlon...) le permitirá actualizarse en el futuro.
Desgraciadamente, las memorias no son todas compatibles entre ellas, especialmente los módulos de más de 128 MB; existen módulos que van perfectamente en una placa y en otra ni arrancan. Si puede, escoja memoria de marca: Kingston, Samsung, Micron, HP... aunque tampoco lo puede considerar una garantía; lo mejor, comprar en el mismo lugar placa y memoria, asegurándose de que es un sitio de confianza
¡ Donde Comprar !
Vendedores Certificados :
Chile
Antofagasta
Paper Mill Limitada
Jose Miguel Carrera #1527 Loca 4
Antofagasta, Chile
545-2421
pmill[arroba]vtr.net
Santiago
Bac Computación
Miraflores 222 piso 7
Santiago
Tel: 441-5200
ventas@bac.cl
Comtec
Av Apoquindo, 6448 3er piso
Las Condes - Santiago
Tel: 655-9006
ventas@comtecsa.com
Edapi
Av. Chile España 414
Ñuñoa - Santiago
Tel: 375-2600
buzon[arroba]edapi.cl
Inacom
Eleodoro Yañez 1634
Providencia - Santiago
Tel: 470-2000
ventas[arroba]inacom-chile.com
Microgeo
Mar del Plata, 2147
Santiago
Tel: 372-8900
microgeo[arroba]microgeo.cl
PC Book
Santa Magdalena , 76
Providencia - Santiago
Tel: 374-8000
pcbook[arroba]pcbook.cl
Red Home
Alonso de Córdova 5860
Las Condes - Santiago
Tel: 201-8607
redhome[arroba]entelchile.net
SPC Chile
Galvarino Gallardo, 1803
Providencia - Santiago
Tel: 750-8700
spcchile[arroba]spcchile.cl
Sonda
Teatinos, 550
Santiago
Tel: 560-5000
rlazen[arroba]sonda.com
UNO - Computerland Microcare
Avda Santa Maria, 2560
Providencia - Santiago
Tel: 233-2577
info[arroba]unocm.cl
Vector
Los Alerces, 2117
Ñuñoa - Santiago
Tel: 239-2000
ventas[arroba]vector.cl
MEMORIAS Y PRECIOS
MEM.8MB 72PIN P/NOTEBOOK.4 CHIP'S
Neto en US$12,83
Neto en $9.610

CODIGO: 1.386
Precio Venta$11.339 (c/iva)

MEM.DIMM 128MB DDR PC-2100 MICRON
Neto en US$44,94
Neto en $33.660

CODIGO: 5.333
Precio Venta$39.719 (c/iva)
MEM.DIMM 128MB S-DRAM IBM PC-100
Neto en US$51,86
Neto en $38.843

CODIGO: 2.321
Precio Venta$45.835 (c/iva)

MEM.DIMM 128MB S-DRAM INFINEON PC-133
Neto en US$19,26
Neto en $14.426

CODIGO: 3.804
Precio Venta$17.022 (c/iva)
MEM.DIMM 128MB S-DRAM KINGSTON PC-133
Neto en US$23,02
Neto en $17.242

CODIGO: 4.086
Precio Venta$20.346 (c/iva)

MEM.DIMM 128MB S-DRAM MICRON PC-133
Neto en US$19,26
Neto en $14.426

CODIGO: 2.972
Precio Venta$17.022 (c/iva)
MEM.DIMM 128MB S-DRAM SYNCMAX/NEC PC-133
Neto en US$23,12
Neto en $17.317

CODIGO: 5.539
Precio Venta$20.434 (c/iva)

MEM.DIMM 128MB SPECTEK PC-133
Neto en US$19,26
Neto en $14.426

CODIGO: 4.729
Precio Venta$17.022 (c/iva)
MEM.DIMM 256MB DDR PC-2100 KINGSTON 266MHZ
Neto en US$81,26
Neto en $60.864

CODIGO: 5.222
Precio Venta$71.819 (c/iva)

MEM.DIMM 256MB DDR PC-2100 MICRON
Neto en US$79,60
Neto en $59.620

CODIGO: 5.334
Precio Venta$70.352 (c/iva)
MEM.DIMM 256MB ECC REG. MICRON PC133
Neto en US$113,85
Neto en $85.274

CODIGO: 3.987
Precio Venta$100.623 (c/iva)

MEM.DIMM 256MB ECC REG. MICRON PC133
Neto en US$113,85
Neto en $85.274

CODIGO: 5.365
Precio Venta$100.623 (c/iva)
MEM.DIMM 32MB S-DRAM MICRON PC-100
Neto en US$6,32
Neto en $4.734

CODIGO: 2.103
Precio Venta$5.586 (c/iva)

MEM.DIMM 512MB S-DRAM MICRON PC-133
Neto en US$77,04
Neto en $57.703

CODIGO: 5.361
Precio Venta$68.089 (c/iva)
MEM.DIMM 64MB S-DRAM INFINEON PC-133
Neto en US$12,83
Neto en $9.610

CODIGO: 3.456
Precio Venta$11.339 (c/iva)

MEM.DIMM 64MB S-DRAM MICRON PC-133
Neto en US$12,83
Neto en $9.610

CODIGO: 2.989
Precio Venta$11.339 (c/iva)
MEMORIA FLASH 64MB MULTIMEDIA CARD KINGSTON
Neto en US$84,76
Neto en $63.485

CODIGO: 4.603
Precio Venta$74.913 (c/iva)


Resumen
En este trabajo se dieron respuestas a algunas preguntas tales como ¿Qué es la Memoria RAM?, Cuantos tipos de Memoria existen?, ¿Cuánta Memoria necesito? Etc.
También hicimos una descripción acerca de los tipos de memoria más comúnmente usados en los computadores. Explicando brevemente su funcionamiento, velocidades de acceso y equipos en los cuales son utilizadas.
Profundizamos en el tipo de memoria RAMBUS, por ser uno de las más actuales. La cual puede adquirir gran importancia en el mercado, debido a que cuenta con el apoyo de INTEL.
También dimos a conocer Lugares donde Comprar y Pecios, y además recomendaciones para Comprar memorias Ram
Finalmente, presentamos las conclusiones a las cuales hemos llegado.
Conclusión
Como hemos visto, la aparición de las computadoras electrónicas es bastante reciente, y ha tenido un avance vertiginoso. Tanto es así, que hoy en día la competencia entre las empresas productoras de computadores a provocado la aparición de nuevos modelos con períodos muy cortos de tiempo, los cuales a veces son de meses. Lo que provoca un aumento en: las velocidades de los procesadores; capacidades de almacenamiento; velocidad de transferencia de los buses; etcétera.
Lo citado anteriormente a exigido a los fabricantes de memorias, la constante actualización de las mismas, superándose una y otra vez en velocidad, capacidad y almacenamiento.
Actualmente el mercado está tomando vigor nuevamente, debido a que han aparecido procesadores muy rápidos, los cuales trabajan a velocidades de 1 GHz.
En el momento actual, parece que lo más razonable para la inmensa mayoría de usuarios es instalar memoria SDRAM PC133, tanto por su excelente relación calidad/precio como por su probada compatibilidad.
Esta memoria debería ser la opción elegida para cualquier micro que vayamos a instalar, ya que la diferencia de precio con la PC100 es muy escasa y aunque ahora no la aprovechemos al máximo (caso de instalarla en un Celeron, Athlon o un Pentium III con bus de 100MHz), en el futuro nos dará más posibilidades de ampliación.
Teniendo esto en cuenta, si va a instalar un micro Intel los chipsets más recomendables para la placa base serían los VIA Apollo Pro 133/133A, por todas sus modernas capacidades pero principalmente por su soporte de PC133. En el caso de placas para el AMD Athlon K7, el mejor sería el VIA KX133; si no podemos encontrar placas base con este chipset (aún no está muy implantado), por lo menos deberíamos instalar PC133 para poder ampliar en un futuro.
Las placas con chipset 820 no son en absoluto recomendables, por su elevado precio y mal rendimiento con memorias SDRAM. Eso sí, si puede permitirse instalar memoria Rambus de la clase PC800 notará un cierto aumento de rendimiento, pero mejor invierta la diferencia en comprar una tarjeta gráfica mejor, un disco duro más rápido, más memoria o un micro de unos cuantos MHz más.
Por lo que respecta al ya clásico chipset BX, tal vez no sea la mejor compra para una placa base nueva, pero su rendimiento con micros de bus de 100 MHz es francamente elevado y puede ser una excelente solución de compromiso hasta que lleguen chipsets más modernos, especialmente en placas preparadas para overclocking. Eso sí, siempre que pueda instale memoria PC133 (o al menos PC100 de marca).
En un futuro cercano, es de esperar que por fin aparezcan chipsets Intel basados en el 820 pero preparados para soportar PC133 (los llamados Intel 815), además de los primeros desarrollos con soporte de memoria DDR-SDRAM (probablemente en chipsets de VIA y AMD), que permitirá transferencias de entre 1,6 y 2,1 GB/s.
E incluso, tal vez la memoria Rambus baje su precio radicalmente y se convierta en una opción viable
Observando los hechos que han sucedido a lo largo de la evolución de la memoria, podemos suponer que la misma continuará creciendo en cuanto a velocidad, capacidad y disminuyendo el espacio físico ocupado.


Tarjeta de expansión

Saltar a: navegación, búsqueda
Instalación de una tarjeta de expansión.
Las tarjetas de expansión son dispositivos con diversos circuitos integrados, y controladores que, insertadas en sus correspondientes ranuras de expansión, sirven para ampliar las capacidades de un ordenador. Las tarjetas de expansión más comunes sirven para añadir memoria, controladoras de unidad de disco, controladoras de vídeo, puertos serie o paralelo y dispositivos de módem internos. Por lo general, se suelen utilizar indistintamente los términos «placa» y «tarjeta» para referirse a todas las tarjetas de expansión.
En la actualidad las tarjetas suelen ser de tipo PCI, PCI Express o AGP. Como ejemplo de tarjetas que ya no se utilizan tenemos la de tipo Bus ISA.
Gracias al avance en la tecnología USB y a la integración de audio, video o red en la placa base, hoy en día son menos imprescindibles para tener un PC completamente funcional.

La historia de la tarjeta de expansión

El primer microordenador en ofrecer un bus de tarjeta tipo ranura fue el Altair 8800, desarrollado en 1974-1975. Inicialmente, las implementaciones de este bus eran de marca registrada (como Apple II y Macintosh), pero en 1982 fabricantes de computadoras basadas en el Intel 8080/Zilog Z80 que ejecutaban CP/M ya habían adoptado el estándar S-100. IBM lanzó el bus XT, con el primer IBM PC en 1981; se llamaba entonces el bus PC, ya que el IBM XT, que utilizaba el mismo bus (con una leve excepción) no se lanzó hasta 1983. XT (también denominado ISA de 8 bits) fue reemplazado por ISA (también denominado ISA de 16 bits), conocido originalmente como el bus AT, en 1984. El bus MCA de IBM, desarrollado para el PS/2 en 1987, competía con ISA, pero cayó en desgracia debido a la aceptación general de ISA de parte de la industria, y la licencia cerrada que IBM mantenía sobre el bus MCA. EISA, la versión extendida de 32 bits abogada por Compaq, era común en las placas base de los PC hasta 1997, cuando Microsoft lo declaró un «subsistema heredado» en el libro blanco industrial PC 97. VESA Local Bus, un bus de expansión al principio de los 1990 que estaba ligado intrínsecamente a la CPU 80486, se volvió obsoleto (además del procesador) cuando Intel lanzó la CPU Pentium en 1993.
El bus PCI se lanzó en 1991 para reemplazar a ISA. El estándar (ahora en la versión 3.0) se encuentra en las placas base de los PC aun hoy en día. Intel lanzó el bus AGP en 1997 como una solución dedicada de aceleración de video. Aunque se denominaba un bus, AGP admite una sola tarjeta a la vez. A partir de 2005, PCI Express ha estado reemplazando a PCI y a AGP. Este estándar, aprobado en 2004, implementa el protocolo lógico PCI a través de una interfaz de comunicación en serie.
Después del bus S-100, este artículo sólo menciona buses empleados en PCs compatibles con IBM/Windows-Intel. La mayoría de las otras líneas de computadoras que no eran compatibles con IBM, inclusive las de Tandy, Commodore, Amiga y Atari, ofrecían sus propios buses de expansión. Aun muchas consolas de videojuegos, tales como el Sega Genesis, incluían buses de expansión; al menos en el caso del Genesis, el bus de expansión era de marca registrada, y de hecho las ranuras de cartucho de la muchas consolas que usaban cartuchos (excepto el Atari 2600) calificarían como buses de expansión, ya que exponían las capacidades de lectura y escritura del bus interno del sistema. No obstante, los módulos de expansión conectados a esos interfaces, aunque eran funcionalmente iguales a las tarjetas de expansión, no son técnicamente tarjetas de expansión, debido a su forma física.
Para sus modelos 1000 EX y 1000 HX, Tandy Computer diseñó la interfaz de expansión PLUS, una adaptación de las tarjetas del bus XT con un factor de forma más pequeño. Porque es eléctricamente compatible con el bus XT (también denominado ISA de 8 bits o XT-ISA), un adaptador pasivo puede utilizarse para conectar tarjetas XT a un conector de expansión PLUS. Otra característica de tarjetas PLUS es que se pueden apilar. Otro bus que ofrecía módulos de expansión capaces de ser apilados era el bus «sidecar» empleado por el IBM PCjr. Éste pudo haber sido eléctricamente igual o similar al bus XT; seguramente poseía algunas similitudes ya que ambos esencialmente exponían los buses de dirección y de datos de la CPU 8088, con búferes y preservación de estado, la adición de interrupciones y DMA proveídos por chips complementarios de Intel, y algunas líneas de detección de fallos (corriente idónea, comprobación de Memoria, comprobación de Memoria E/S). Otra vez, PCjr sidecars no son técnicamente tarjetas de expansión, sino módulos de expansión, con la única diferencia siendo que el sidecar es una tarjeta de memoria envuelta en una caja de plástico (con agujeros que exponen los conectores).

Tipos de tarjetas de expansión



Fuente de alimentación

Saltar a: navegación, búsqueda
Fuente de alimentación para PC formato ATX (sin cubierta superior, para mostrar su interior y con el ventilador a un lado).
Fuentes de alimentación externas.
En electrónica, una fuente de alimentación es un dispositivo que convierte la tensión alterna de la red de suministro, en una o varias tensiones, prácticamente continuas, que alimentan los distintos circuitos del aparato electrónico al que se conecta (ordenador, televisor, impresora, router, etc.).

Contenido

Clasificación

Las fuentes de alimentación, para dispositivos electrónicos, pueden clasificarse básicamente como fuentes de alimentación lineales y conmutadas. Las lineales tienen un diseño relativamente simple, que puede llegar a ser más complejo cuanto mayor es la corriente que deben suministrar, sin embargo su regulación de tensión es poco eficiente. Una fuente conmutada, de la misma potencia que una lineal, será más pequeña y normalmente más eficiente pero será más compleja y por tanto más susceptible a averías.

Fuentes de alimentación lineales

Las fuentes lineales siguen el esquema: transformador, rectificador, filtro, regulación y salida.
En primer lugar el transformador adapta los niveles de tensión y proporciona aislamiento galvánico. El circuito que convierte la corriente alterna en continua se llama rectificador, después suelen llevar un circuito que disminuye el rizado como un filtro de condensador. La regulación, o estabilización de la tensión a un valor establecido, se consigue con un componente denominado regulador de tensión. La salida puede ser simplemente un condensador. Esta corriente abarca toda la energía del circuito,esta fuente de alimentación deben tenerse en cuenta unos puntos concretos a la hora de decidir las características del transformador.

Fuentes de alimentación conmutadas

Una fuente conmutada es un dispositivo electrónico que transforma energía eléctrica mediante transistores en conmutación. Mientras que un regulador de tensión utiliza transistores polarizados en su región activa de amplificación, las fuentes conmutadas utilizan los mismos conmutándolos activamente a altas frecuencias (20-100 kHz típicamente) entre corte (abiertos) y saturación (cerrados). La forma de onda cuadrada resultante es aplicada a transformadores con núcleo de ferrita (Los núcleos de hierro no son adecuados para estas altas frecuencias) para obtener uno o varios voltajes de salida de corriente alterna (CA) que luego son rectificados (Con diodos rápidos) y filtrados (inductores y condensadores) para obtener los voltajes de salida de corriente continua (CC). Las ventajas de este método incluyen menor tamaño y peso del núcleo, mayor eficiencia y por lo tanto menor calentamiento. Las desventajas comparándolas con fuentes lineales es que son más complejas y generan ruido eléctrico de alta frecuencia que debe ser cuidadosamente minimizado para no causar interferencias a equipos próximos a estas fuentes.
Las fuentes conmutadas tienen por esquema: rectificador, conmutador, transformador, otro rectificador y salida.
La regulación se obtiene con el conmutador, normalmente un circuito PWM (Pulse Width Modulation) que cambia el ciclo de trabajo. Aquí las funciones del transformador son las mismas que para fuentes lineales pero su posición es diferente. El segundo rectificador convierte la señal alterna pulsante que llega del transformador en un valor continuo. La salida puede ser también un filtro de condensador o uno del tipo LC.
Las ventajas de las fuentes lineales son una mejor regulación, velocidad y mejores características EMC. Por otra parte las conmutadas obtienen un mejor rendimiento, menor coste y tamaño.

Especificaciones

Una especificación fundamental de las fuentes de alimentación es el rendimiento, que se define como la potencia total de salida entre la potencia activa de entrada. Como se ha dicho antes, las fuentes conmutadas son mejores en este aspecto.
El factor de potencia es la potencia activa entre la potencia aparente de entrada. Es una medida de la calidad de la corriente.
Aparte de disminuir lo más posible el rizado, la fuente debe mantener la tensión de salida al voltaje solicitado independientemente de las oscilaciones de la línea, regulación de línea o de la carga requerida por el circuito, regulación de carga.

Fuentes de alimentación especiales

Entre las fuentes de alimentación alternas, tenemos aquellas en donde la potencia que se entrega a la carga está siendo controlada por transistores, los cuales son controlados en fase para poder entregar la potencia requerida a la carga.
Otro tipo de alimentación de fuentes alternas, catalogadas como especiales son aquellas en donde la frecuencia es variada, manteniendo la amplitud de la tensión logrando un efecto de fuente variable en casos como motores y transformadores de tensión.

Véase también



CD-ROM

Saltar a: navegación, búsqueda
CD virgen con su caja.
Esta página contiene información no técnica sobre los discos compactos; para esta información, véase Disco compacto.
Un CD-ROM (siglas del inglés Compact Disc - Read Only Memory), es un prensado disco compacto que contiene los datos de acceso, pero sin permisos de escritura, un equipo de almacenamiento y reproducción de música, el CD-ROM estándar fue establecido en 1985 por Sony y Philips. Pertenece a un conjunto de libros de colores conocido como Rainbow Books que contiene las especificaciones técnicas para todos los formatos de discos compactos.
La Unidad de CD-ROM debe considerarse obligatoria en cualquier computador que se ensamble o se construya actualmente, porque la mayoría del software se distribuye en CD-ROM. Algunas de estas unidades leen CD-ROM y graban sobre los discos compactos de una sola grabada(CD-RW). Estas unidades se llaman quemadores, ya que funcionan con un láser que "quema" la superficie del disco para grabar la información.
Actualmente, aunque aún se utilizan, están empezando a caer en desuso desde que empezaron a ser sustituidos por unidades de DVD. Esto se debe principalmente a las mayores posibilidades de información, ya que un DVD-ROM supera en capacidad a un CD-ROM.

Contenido

Historia

El disco compacto fue creado por un holandés, y un japonés, en 1979. Al año siguiente, Sony y Philips, que habían desarrollado el sistema de audio digital Compact Disc, comenzaron a distribuir discos compactos, pero las ventas no tuvieron éxito por la depresión económica de aquella época. Entonces decidieron abarcar el mercado de la música clásica, de mayor calidad. Comenzaba el lanzamiento del nuevo y revolucionario formato de grabación audio que posteriormente se extendería a otros sectores de la grabación de datos.
El sistema óptico fue desarrollado por Philips mientras que la Lectura y Codificación Digital corrió a cargo de Sony, fue presentado en junio de 1980 a la industria y se adhirieron al nuevo producto 40 compañías de todo el mundo mediante la obtención de las licencias correspondientes para la producción de reproductores y discos.
En 1981, el director de orquesta Herbert von Karajan convencido del valor de los discos compactos, los promovió durante el festival de Salzburgo y desde ese momento empezó su éxito. Los primeros títulos grabados en discos compactos en Europa fueron la Sinfonía alpina de Richard Strauss, los valses de Frédéric Chopin interpretados por el pianista chileno Claudio Arrau y el álbum The Visitors de ABBA, en 1983 se produciría el primer disco compacto en los Estados Unidos por CBS (Hoy Sony Music) siendo el primer título en el mercado un álbum de Billy Joel. La producción de discos compactos se centralizo por varios años en los Estados Unidos y Alemania de donde eran distribuidos a todo el Mundo, ya entrada la década de los noventas se instalaron fabricas en diversos países.
En el año 1984, los CD salieron al mundo de la informática, permitiendo almacenar hasta 700 MB. El diámetro de la perforación central de los discos compactos fue determinado en 15 mm, cuando entre comidas, los creadores se inspiraron en el diámetro de la moneda de 10 centavos de florín de Holanda. En cambio, el diámetro de los discos compactos es de 12 cm, lo que corresponde a la anchura de los bolsillos superiores de las camisas para hombres, porque según la filosofía de Sony, todo debía caber allí.

Capacidad

Un CD-ROM estándar puede albergar 650 o 700 (a veces 800) MB de datos. El CD-ROM es popular para la distribución de software, especialmente aplicaciones multimedia, y grandes bases de datos. Un CD pesa menos de 30 gramos.
Para poner la memoria del CD-ROM en contexto, una novela promedio contiene 60 000 palabras. Si se asume que una palabra promedio tiene 10 letras (de hecho es considerablemente menos de 10 de letras) y cada letra ocupa un byte, una novela por lo tanto ocuparía 600 000 bytes (600 Kb). Un CD puede por lo tanto contener más de 1000 novelas. Si cada novela ocupa por lo menos un centímetro en un estante, entonces un CD puede contener el equivalente de más de 10 metros en el estante. Sin embargo, los datos textuales pueden ser comprimidos diez veces más, usando algoritmos compresores, por lo tanto un CD-ROM puede almacenar el equivalente a más de 100 metros de estante.
Capacidades de los discos compactos
Tipo Sectores Capacidad máxima de datos Capacidad máxima de audio Tiempo
(MB) (MiB) (MB) (MiB)
(min)
8 cm 94,500 193.536 ˜ 184.6 222.264 ˜ 212.0 21
8 cm DL 283,500 580.608 ˜ 553.7 666.792 ˜ 635.9 63
650 MB 333,000 681.984 ˜ 650.3 783.216 ˜ 746.9 74
700 MB 360,000 737.280 ˜ 703.1 846.720 ˜ 807.4 80
800 MB 405,000 829.440 ˜ 791.0 952.560 ˜ 908.4 90
900 MB 445,500 912.384 ˜ 870.1 1,047.816 ˜ 999.3 99
Nota: Estos valores no son exactos.

Lectora de CD

Unidad Lectora de CD para computadora personal.
Una lectora de CD es un dispositivo electrónico que permite la lectura de estos mediante el empleo de un haz de un rayo láser y la posterior transformación de estos en impulsos eléctricos que la computadora interpreta, escritos por grabadoras de CD (a menudo llamadas "quemadoras") -dispositivo similar a la lectora de CD, con la diferencia que hace lo contrario a la lectora, es decir, transformar impulsos eléctricos en un haz de luz láser que almacenan en el CD datos binarios en forma de pozos y llanos-.
Los pozos tienen una anchura de 0,6 micras, mientras que su profundidad (respecto a los llanos) se reduce a 0,12 micras. La longitud de pozos y llanos está entre las 0,9 y las 3,3 micras. Entre una revolución de la espiral y las adyacentes hay una distancia aproximada de 1,6 micras (lo que hace cerca de 20 marcas por centímetro).
Es creencia muy común el pensar que un pozo corresponde a un valor binario y un llano al otro valor. Sin embargo, esto no es así, sino que los valores binarios son detectados por las transiciones de pozo a llano, y viceversa: una transición determina un 1 binario, mientras que la longitud de un pozo o un llano indica el número consecutivo de 0 binarios.

Almacenamiento y Limpieza

Para que el disco almacene todos los datos en forma íntegra y por muy largo tiempo, es necesario conservar el disco en los empaques o lugares correctos. La parte (o las partes) reflectivas del disco deben estar limpias y libres de rayaduras, para evitar la pérdida de datos. Es recomendable transferir los datos de un disco antiguo o erosionado, a otro disco limpio o nuevo, antes de que se pierdan todos los datos con el tiempo.
Sólo se recomienda limpiar el disco si está muy sucio y aparecen saltos de imagen y/o sonido, o errores de lectura. Ya que los sistemas de corrección de errores pueden leer los datos a través de una cantidad moderada de arañazos y/o huellas.
Si el disco está solamente sucio, es recomendable limpiarlo con un paño suave (o de algodón) en movimientos de una sola dirección, desde el centro del disco hacia afuera. Nunca debería limpiarse un disco con movimientos circulares, para evitar que la suciedad o el polvo dañen los datos del disco. Si el disco está demasiado sucio, es conveniente sumergirlo en agua y limpiarlo a continuación, tras lo cual se ha de dejar secar muy bien antes de leer o grabar en él (es desaconsejable usar un secador de cabello para esto, ya que el aire caliente produce vapor que podría deformar el disco). Si el disco está rayado y sucio, es recomendable limpiarlo de la manera que aplique la condición, e intentar la lectura del disco. Si no ocurren errores de datos, o la mayoría de los datos están íntegros, es muy recomendable copiar los mismos en otro disco nuevo o en otro medio, como un disco duro o pendrive.
El mejor empaque para el disco es en el que viene el disco al ser adquirido. También pueden utilizarse portadiscos o álbumes de discos (siempre cuando sean de buena calidad).
Nunca ha de escribirse o pintarse el disco por su cara de lectura (la no serigrafiada), para evitar errores de lectura o escritura. Pueden identificarse los discos en la parte especializada (en las instrucciones o en el disco) con un marcador especial y nunca con lápiz o bolígrafo, para evitar la provocación de grietas en el disco.
No deberían pegarse papeles o adhesivos en el disco, salvo que se trate de sistemas de etiquetado específicamente diseñados para este soporte. Un adhesivo no simétrico respecto al centro del disco podría desplazar su centro de masas y producir vibraciones no deseadas durante su lectura.
En algunos casos es probable que un disco muy dañado o agrietado se rompa dentro de la unidad de lectura o escritura del disco. En ese caso, conviene apagar el dispositivo o el equipo y contactar con alguna persona especializada, para así evitar más daños. Si no hay disponible ninguna persona especializada puede retirarse la unidad de lectura o escritura del equipo, hasta tener otra disponible.

Multisesión

Desde hace tiempo han surgido programas computacionales para grabar unidades CD que nos permiten utilizar un disco CD-R como si de un disco regrabable se tratara. Esto no quiere decir que el CD se pueda grabar y posteriormente borrar, sino que se puede grabar en distintas sesiones, hasta ocupar todo el espacio disponible del CD.
Los discos multisesión no son más que un disco normal grabable, ni en sus cajas, ni en la información sobre sus detalles técnicos se resalta que funcione como disco Multisesión, ya que esta función no depende del disco, sino cómo está grabado.
Si se graba un CD y este no es finalizado, podemos añadirle una nueva sesión, desperdiciando una parte para separar las sesiones (unos 20 MB aproximadamente).
Haremos que un CD sea multisesión en el momento que realizamos la segunda grabación sobre él, esté o no finalizado, sin embargo, al grabar un CD de música automáticamente el CD-R queda finalizado y no puede ser utilizado como disco Multisesión.
No todos los dispositivos ni los sistemas operativos, son capaces de reconocer un disco con multisesión, o que no esté finalizado.

Diferencias entre CD-R multisesión y CD-RW

Puede haber confusión entre un CD-R con grabado multisesión y un CD-RW. En el momento en que un disco CD-R se hace multisesión, el software le dará la característica de que pueda ser utilizado en múltiples sesiones, es decir, en cada grabación se crearán «sesiones», que sólo serán modificadas por lo que el usuario crea conveniente. Por ejemplo, si se ha grabado en un CD-R los archivos prueba1.txt, prueba2.txt y prueba 3.txt, se habrá creado una sesión en el disco que será leída por todos los reproductores y que contendrá los archivos mencionados. Si en algún momento no se necesita alguno de los ficheros o se modifica el contenido de la grabación, el programa software creará una nueva sesión, a continuación de la anterior, donde no aparecerán los archivos que no se desee consultar, o se verán las modificaciones realizadas, es decir, es posible añadir más archivos, o incluso quitar algunos que estaban incluidos. Al realizar una modificación la sesión anterior no se borrará, sino que quedará oculta por la nueva sesión dando una sensación de que los archivos han sido borrados o modificados, pero en realidad permanecen en el disco.
Obviamente las sesiones anteriores, aunque aparentemente no aparecen permanecen en el disco y están ocupando espacio en el mismo, esto quiere decir que algún día ya no será posible «regrabarlo», modificar los archivos que contiene, porque se habrá utilizado toda la capacidad del disco.
A diferencia de los CD-R, los discos CD-RW sí pueden ser borrados, o incluso formateados (permite usar el disco, perdiendo una parte de su capacidad, pero permitiendo grabar en el ficheros nuevos). En el caso de utilizar un CD-RW cuando borramos, lo borramos completamente, se pueden hacer también borrados parciales, que necesitan una mayor potencia del láser para volver a grabarse. Un disco CD-RW se puede utilizar como un disquete, con software adecuado, siempre que la unidad soporte esta característica, se pueden manipular ficheros como en un disquete, con la salvedad de que no se borra, sino que al borrar un fichero este sigue ocupando un espacio en el disco, aunque al examinarlo no aparezca dicho archivo. Los discos CD-RW necesitan más potencia del láser para poder grabarse, por esta razón los discos regrabables tienen una velocidad de grabación menor que los discos grabables (tardan más en terminar de grabarse).
Los DVD-RW, DVD+RW funcionan de manera análoga, los DVD-RAM también, pero están diseñados para escritura como con los disquetes.

Precio

Actualmente, los precios de los CD vírgenes varía, dependiendo de si se compra por tarrinas o con sus cajas entre los 0,2 y los 0,9€ por unidad.
En España, la SGAE aplica un canon digital que es una remuneración compensatoria por copia privada (una tasa fija) aplicada a diversos medios de grabación y cuya recaudación reciben los autores, editores, productores y artistas, asociados a alguna entidad privada de gestión de derechos de autor, en compensación por las copias que se hacen de sus trabajos en el ámbito privado.

Etiquetado

Actualmente se están investigando una serie de tecnologías láser para grabar motivos e imágenes personalizadas en el anverso de un CD (cara opuesta a la de datos).
El sistema de etiquetado láser fue impuesto por Yamaha con DiscT@2, pero dicho sistema no tuvo éxito. Están apareciendo distintas tecnologías para etiquetar los CD, como LightScribe y Labelflash por ejemplo.
También existen impresoras de tinta especializadas para hacer una impresión de etiquetas, en discos preparados.

Véase también



Disco duro

Saltar a: navegación, búsqueda
Disco Duro
Hard disk platters and head.jpg
Interior de un disco duro; se aprecian dos platos con sus respectivos cabezales.
Conectado a:
Fabricantes comunes:
En informática, un disco duro o disco rígido (en inglés Hard Disk Drive, HDD) es un dispositivo de almacenamiento de datos no volátil que emplea un sistema de grabación magnética para almacenar datos digitales. Se compone de uno o más platos o discos rígidos, unidos por un mismo eje que gira a gran velocidad dentro de una caja metálica sellada. Sobre cada plato, y en cada una de sus caras, se sitúa un cabezal de lectura/escritura que flota sobre una delgada lámina de aire generada por la rotación de los discos.
El primer disco duro fue inventado por IBM en 1956. A lo largo de los años, los discos duros han disminuido su precio al mismo tiempo que han multiplicado su capacidad, siendo la principal opción de almacenamiento secundario para PC desde su aparición en los años 60.1 Los discos duros han mantenido su posición dominante gracias a los constantes incrementos en la densidad de grabación, que se ha mantenido a la par de las necesidades de almacenamiento secundario.1
Los tamaños también han variado mucho, desde los primeros discos IBM hasta los formatos estandarizados actualmente: 3,5" los modelos para PC y servidores, 2,5" los modelos para dispositivos portátiles. Todos se comunican con la computadora a través del controlador de disco, empleando una interfaz estandarizado. Los más comunes hasta los años 2000 han sido IDE (también llamado ATA o PATA), SCSI (generalmente usado en servidores y estaciones de trabajo). Desde el 2000 en adelante ha ido masificándose el uso de los Serial ATA. Existe además FC (empleado exclusivamente en servidores).
Para poder utilizar un disco duro, un sistema operativo debe aplicar un formato de bajo nivel que defina una o más particiones. La operación de formateo requiere el uso de una fracción del espacio disponible en el disco, que dependerá del formato empleado. Además, los fabricantes de discos duros, unidades de estado sólido y tarjetas flash miden la capacidad de los mismos usando prefijos SI, que emplean múltiplos de potencias de 1000 según la normativa IEC, en lugar de los prefijos binarios clásicos de la IEEE, que emplean múltiplos de potencias de 1024, y son los usados mayoritariamente por los sistemas operativos. Esto provoca que en algunos sistemas operativos sea representado como múltiplos 1024 o como 1000, y por tanto existan ligeros errores, por ejemplo un Disco duro de 500 GB, en algunos sistemas operativos sea representado como 465 GiB (Según la IEC Gibibyte, o Gigabyte binario, que son 1024 Mebibytes) y en otros como 500 GB.
Las unidades de estado sólido tienen el mismo uso que los discos duros y emplean las mismas interfaces, pero no están formadas por discos mecánicos, sino por memorias de circuitos integrados para almacenar la información. El uso de esta clase de dispositivos anteriormente se limitaba a las supercomputadoras, por su elevado precio, aunque hoy en día ya son muchísimo más asequibles para el mercado doméstico.2

Contenido

Historia

Antiguo disco duro de IBM (modelo 62PC, «Piccolo»), de 64,5 MB, fabricado en 1979
Al principio los discos duros eran extraíbles, sin embargo, hoy en día típicamente vienen todos sellados (a excepción de un hueco de ventilación para filtrar e igualar la presión del aire).
El primer disco duro, aparecido en 1956, fue el Ramac I, presentado con la computadora IBM 350: pesaba una tonelada y su capacidad era de 5 MB. Más grande que una nevera actual, este disco duro trabajaba todavía con válvulas de vacío y requería una consola separada para su manejo.
Su gran mérito consistía en el que el tiempo requerido para el acceso era relativamente constante entre algunas posiciones de memoria, a diferencia de las cintas magnéticas, donde para encontrar una información dada, era necesario enrollar y desenrollar los carretes hasta encontrar el dato buscado, teniendo muy diferentes tiempos de acceso para cada posición.
La tecnología inicial aplicada a los discos duros era relativamente simple. Consistía en recubrir con material magnético un disco de metal que era formateado en pistas concéntricas, que luego eran divididas en sectores. El cabezal magnético codificaba información al magnetizar diminutas secciones del disco duro, empleando un código binario de «ceros» y «unos». Los bits o dígitos binarios así grabados pueden permanecer intactos años. Originalmente, cada bit tenía una disposición horizontal en la superficie magnética del disco, pero luego se descubrió cómo registrar la información de una manera más compacta.
El mérito del francés Albert Fert y al alemán Peter Grünberg (ambos premio Nobel de Física por sus contribuciones en el campo del almacenamiento magnético) fue el descubrimiento del fenómeno conocido como magnetorresistencia gigante, que permitió construir cabezales de lectura y grabación más sensibles, y compactar más los bits en la superficie del disco duro. De estos descubrimientos, realizados en forma independiente por estos investigadores, se desprendió un crecimiento espectacular en la capacidad de almacenamiento en los discos duros, que se elevó un 60% anual en la década de 1990.
En 1992, los discos duros de 3,5 pulgadas alojaban 250 Megabytes, mientras que 10 años después habían superado 40 Gigabytes (40000 Megabytes). En la actualidad, ya contamos en el uso cotidiano con discos duros de más de 3 terabytes (TB), esto es 3 mil Gb, (3000000000 Megabytes)
En 2005 los primeros teléfonos móviles que incluían discos duros fueron presentados por Samsung y Nokia, aunque no tuvieron mucho éxito ya que las memorias flash los acabaron desplazando, sobre todo por asuntos de fragilidad y superioridad.

Características de un disco duro

Las características que se deben tener en cuenta en un disco duro son:
  • Tiempo medio de acceso: Tiempo medio que tarda la aguja en situarse en la pista y el sector deseado; es la suma del Tiempo medio de búsqueda (situarse en la pista), Tiempo de lectura/escritura y la Latencia media (situarse en el sector).
  • Tiempo medio de búsqueda: Tiempo medio que tarda la aguja en situarse en la pista deseada; es la mitad del tiempo empleado por la aguja en ir desde la pista más periférica hasta la más central del disco.
  • Tiempo de lectura/escritura: Tiempo medio que tarda el disco en leer o escribir nueva información: Depende de la cantidad de información que se quiere leer o escribir, el tamaño de bloque, el número de cabezales, el tiempo por vuelta y la cantidad de sectores por pista.
  • Latencia media: Tiempo medio que tarda la aguja en situarse en el sector deseado; es la mitad del tiempo empleado en una rotación completa del disco.
  • Velocidad de rotación: Revoluciones por minuto de los platos. A mayor velocidad de rotación, menor latencia media.
  • Tasa de transferencia: Velocidad a la que puede transferir la información a la computadora una vez la aguja está situada en la pista y sector correctos. Puede ser velocidad sostenida o de pico.
Otras características son:

Estructura física

Componentes de un disco duro. De izquierda a derecha, fila superior: tapa, carcasa, plato, eje; fila inferior: espuma aislante, circuito impreso de control, cabezal de lectura / escritura, actuador e imán, tornillos.
Interior de un disco duro; se aprecia la superficie de un plato y el cabezal de lectura/escritura retraído, a la izquierda.
Dentro de un disco duro hay uno o varios discos (de aluminio o cristal) concéntricos llamados platos (normalmente entre 2 y 4, aunque pueden ser hasta 6 ó 7 según el modelo), y que giran todos a la vez sobre el mismo eje, al que están unidos. El cabezal (dispositivo de lectura y escritura) está formado por un conjunto de brazos paralelos a los platos, alineados verticalmente y que también se desplazan de forma simultánea, en cuya punta están las cabezas de lectura/escritura. Por norma general hay una cabeza de lectura/escritura para cada superficie de cada plato. Los cabezales pueden moverse hacia el interior o el exterior de los platos, lo cual combinado con la rotación de los mismos permite que los cabezales puedan alcanzar cualquier posición de la superficie de los platos..
Cada plato posee dos ojos, y es necesaria una cabeza de lectura/escritura para cada cara. Si se observa el esquema Cilindro-Cabeza-Sector de más abajo, a primera vista se ven 4 brazos, uno para cada plato. En realidad, cada uno de los brazos es doble, y contiene 2 cabezas: una para leer la cara superior del plato, y otra para leer la cara inferior. Por tanto, hay 8 cabezas para leer 4 platos, aunque por cuestiones comerciales, no siempre se usan todas las caras de los discos y existen discos duros con un número impar de cabezas, o con cabezas deshabilitadas. Las cabezas de lectura/escritura nunca tocan el disco, sino que pasan muy cerca (hasta a 3 nanómetros), debido a una finísima película de aire que se forma entre éstas y los platos cuando éstos giran (algunos discos incluyen un sistema que impide que los cabezales pasen por encima de los platos hasta que alcancen una velocidad de giro que garantice la formación de esta película). Si alguna de las cabezas llega a tocar una superficie de un plato, causaría muchos daños en él, rayándolo gravemente, debido a lo rápido que giran los platos (uno de 7.200 revoluciones por minuto se mueve a 129 km/h en el borde de un disco de 3,5 pulgadas).

Direccionamiento

Cilindro, Cabeza y Sector
Pista (A), Sector (B), Sector de una pista (C), Clúster (D)
Hay varios conceptos para referirse a zonas del disco:
  • Plato: cada uno de los discos que hay dentro del disco duro.
  • Cara: cada uno de los dos lados de un plato.
  • Cabeza: número de cabezales.
  • Pistas: una circunferencia dentro de una cara; la pista 0 está en el borde exterior.
  • Cilindro: conjunto de varias pistas; son todas las circunferencias que están alineadas verticalmente (una de cada cara).
  • Sector : cada una de las divisiones de una pista. El tamaño del sector no es fijo, siendo el estándar actual 512 bytes, aunque próximamente serán 4 KiB. Antiguamente el número de sectores por pista era fijo, lo cual desaprovechaba el espacio significativamente, ya que en las pistas exteriores pueden almacenarse más sectores que en las interiores. Así, apareció la tecnología ZBR (grabación de bits por zonas) que aumenta el número de sectores en las pistas exteriores, y utiliza más eficientemente el disco duro. Así las pistas se agrupan en zonas de pistas de igual cantidad de sectores. Cuanto más lejos del centro de cada plato se encuentra una zona, ésta contiene una mayor cantidad de sectores en sus pistas. Además mediante ZBR, cuando se leen sectores de cilindros más externos la tasa de transferencia de bits por segundo es mayor; por tener la misma velocidad angular que cilindros internos pero mayor cantidad de sectores.3
El primer sistema de direccionamiento que se usó fue el CHS (cilindro-cabeza-sector), ya que con estos tres valores se puede situar un dato cualquiera del disco. Más adelante se creó otro sistema más sencillo: LBA (direccionamiento lógico de bloques), que consiste en dividir el disco entero en sectores y asignar a cada uno un único número. Éste es el que actualmente se usa.

Tipos de conexión

Si hablamos de disco duro podemos citar los distintos tipos de conexión que poseen los mismos con la placa base, es decir pueden ser SATA, IDE, SCSI o SAS:
  • IDE: Integrated Drive Electronics ("Dispositivo electrónico integrado") o ATA (Advanced Technology Attachment), controla los dispositivos de almacenamiento masivo de datos, como los discos duros y ATAPI (Advanced Technology Attachment Packet Interface) Hasta aproximadamente el 2004, el estándar principal por su versatilidad y asequibilidad. Son planos, anchos y alargados.
  • SCSI: Son interfaces preparadas para discos duros de gran capacidad de almacenamiento y velocidad de rotación. Se presentan bajo tres especificaciones: SCSI Estándar (Standard SCSI), SCSI Rápido (Fast SCSI) y SCSI Ancho-Rápido (Fast-Wide SCSI). Su tiempo medio de acceso puede llegar a 7 milisegundos y su velocidad de transmisión secuencial de información puede alcanzar teóricamente los 5 Mbps en los discos SCSI Estándares, los 10 Mbps en los discos SCSI Rápidos y los 20 Mbps en los discos SCSI Anchos-Rápidos (SCSI-2). Un controlador SCSI puede manejar hasta 7 discos duros SCSI (o 7 periféricos SCSI) con conexión tipo margarita (daisy-chain). A diferencia de los discos IDE, pueden trabajar asincrónicamente con relación al microprocesador, lo que posibilita una mayor velocidad de transferencia.
  • SATA (Serial ATA): El más novedoso de los estándares de conexión, utiliza un bus serie para la transmisión de datos. Notablemente más rápido y eficiente que IDE. Existen tres versiones, SATA 1 con velocidad de transferencia de hasta 150 MB/s (hoy día descatalogado), SATA 2 de hasta 300 MB/s, el más extendido en la actualidad; y por último SATA 3 de hasta 600 MB/s el cual se está empezando a hacer hueco en el mercado. Físicamente es mucho más pequeño y cómodo que los IDE, además de permitir conexión en caliente.
  • SAS (Serial Attached SCSI): Interfaz de transferencia de datos en serie, sucesor del SCSI paralelo, aunque sigue utilizando comandos SCSI para interaccionar con los dispositivos SAS. Aumenta la velocidad y permite la conexión y desconexión en caliente. Una de las principales características es que aumenta la velocidad de transferencia al aumentar el número de dispositivos conectados, es decir, puede gestionar una tasa de transferencia constante para cada dispositivo conectado, además de terminar con la limitación de 16 dispositivos existente en SCSI, es por ello que se vaticina que la tecnología SAS irá reemplazando a su predecesora SCSI. Además, el conector es el mismo que en la interfaz SATA y permite utilizar estos discos duros, para aplicaciones con menos necesidad de velocidad, ahorrando costes. Por lo tanto, las unidades SATA pueden ser utilizadas por controladoras SAS pero no a la inversa, una controladora SATA no reconoce discos SAS.

Factor de Forma

El más temprano "factor de forma" de los discos duros, heredó sus dimensiones de las disqueteras. Pueden ser montados en los mismos chasis y así los discos duros con factor de forma, pasaron a llamarse coloquialmente tipos FDD "floppy-disk drives" (en inglés).
La compatibilidad del "factor de forma" continua siendo de 3½ pulgadas (8,89 cm) incluso después de haber sacado otros tipos de disquetes con unas dimensiones más pequeñas.
  • 8 pulgadas: 241,3×117,5×362 mm (9,5×4,624×14,25 pulgadas).
    En 1979, Shugart Associates sacó el primer factor de forma compatible con los disco duros, SA1000, teniendo las mismas dimensiones y siendo compatible con la interfaz de 8 pulgadas de las disqueteras. Había dos versiones disponibles, la de la misma altura y la de la mitad (58,7mm).
  • 5,25 pulgadas: 146,1×41,4×203 mm (5,75×1,63×8 pulgadas). Este factor de forma es el primero usado por los discos duros de Seagate en 1980 con el mismo tamaño y altura máxima de los FDD de 5¼ pulgadas, por ejemplo: 82,5 mm máximo.
    Éste es dos veces tan alto como el factor de 8 pulgadas, que comúnmente se usa hoy; por ejemplo: 41,4 mm (1,64 pulgadas). La mayoría de los modelos de unidades ópticas (DVD/CD) de 120 mm usan el tamaño del factor de forma de media altura de 5¼, pero también para discos duros. El modelo Quantum Bigfoot es el último que se usó a finales de los 90'.
  • 3,5 pulgadas: 101,6×25,4×146 mm (4×1×5.75 pulgadas).
    Este factor de forma es el primero usado por los discos duros de Rodine que tienen el mismo tamaño que las disqueteras de 3½, 41,4 mm de altura. Hoy ha sido en gran parte remplazado por la línea "slim" de 25,4mm (1 pulgada), o "low-profile" que es usado en la mayoría de los discos duros.
  • 2,5 pulgadas: 69,85×9,5-15×100 mm (2,75×0,374-0,59×3,945 pulgadas).
    Este factor de forma se introdujo por PrairieTek en 1988 y no se corresponde con el tamaño de las lectoras de disquete. Este es frecuentemente usado por los discos duros de los equipos móviles (portátiles, reproductores de música, etc...) y en 2008 fue reemplazado por unidades de 3,5 pulgadas de la clase multiplataforma. Hoy en día la dominante de este factor de forma son las unidades para portátiles de 9,5 mm, pero las unidades de mayor capacidad tienen una altura de 12,5 mm.
  • 1,8 pulgadas: 54×8×71 mm.
    Este factor de forma se introdujo por Integral Peripherals en 1993 y se involucró con ATA-7 LIF con las dimensiones indicadas y su uso se incrementa en reproductores de audio digital y su subnotebook. La variante original posee de 2GB a 5GB y cabe en una ranura de expansión de tarjeta de ordenador personal. Son usados normalmente en iPods y discos duros basados en MP3.
  • 1 pulgadas: 42,8×5×36,4 mm.
    Este factor de forma se introdujo en 1999 por IBM y Microdrive, apto para los slots tipo 2 de compact flash, Samsung llama al mismo factor como 1,3 pulgadas.
  • 0,85 pulgadas: 24×5×32 mm.
    Toshiba anunció este factor de forma el 8 de enero de 2004 para usarse en móviles y aplicaciones similares, incluyendo SD/MMC slot compatible con disco duro optimizado para vídeo y almacenamiento para micromóviles de 4G. Toshiba actualmente vende versiones de 4GB (MK4001MTD) y 8GB (MK8003MTD) 5 y tienen el Record Guinness del disco duro más pequeño.
Los principales fabricantes suspendieron la investigación de nuevos productos para 1 pulgada (1,3 pulgadas) y 0,85 pulgadas en 2007, debido a la caída de precios de las memorias flash, aunque Samsung introdujo en el 2008 con el SpidPoint A1 otra unidad de 1,3 pulgadas.
El nombre de "pulgada" para los factores de forma normalmente no identifica ningún producto actual (son especificadas en milímetros para los factores de forma más recientes), pero estos indican el tamaño relativo del disco, para interés de la continuidad histórica.

Estructura lógica

Dentro del disco se encuentran:

Funcionamiento mecánico

Un disco duro suele tener:
  • Platos en donde se graban los datos.
  • Cabezal de lectura/escritura.
  • Motor que hace girar los platos.
  • Electroimán que mueve el cabezal.
  • Circuito electrónico de control, que incluye: interfaz con la computadora, memoria caché.
  • Bolsita desecante (gel de sílice) para evitar la humedad.
  • Caja, que ha de proteger de la suciedad, motivo por el cual suele traer algún filtro de aire.

Integridad

Debido a la distancia extremadamente pequeña entre los cabezales y la superficie del disco, cualquier contaminación de los cabezales de lectura/escritura o las fuentes puede dar lugar a un accidente en los cabezales, un fallo del disco en el que el cabezal raya la superficie de la fuente, a menudo moliendo la fina película magnética y causando la pérdida de datos. Estos accidentes pueden ser causados por un fallo electrónico, un repentino corte en el suministro eléctrico, golpes físicos, el desgaste, la corrosión o debido a que los cabezales o las fuentes sean de pobre fabricación.
Cabezal del disco duro
El eje del sistema del disco duro depende de la presión del aire dentro del recinto para sostener los cabezales y su correcta altura mientras el disco gira. Un disco duro requiere un cierto rango de presiones de aire para funcionar correctamente. La conexión al entorno exterior y la presión se produce a través de un pequeño agujero en el recinto (cerca de 0,5 mm de diámetro) normalmente con un filtro en su interior (filtro de respiración, ver abajo). Si la presión del aire es demasiado baja, entonces no hay suficiente impulso para el cabezal, que se acerca demasiado al disco, y se da el riesgo de fallos y pérdidas de datos. Son necesarios discos fabricados especialmente para operaciones de gran altitud, sobre 3.000 m. Hay que tener en cuenta que los aviones modernos tienen una cabina presurizada cuya presión interior equivale normalmente a una altitud de 2.600 m como máximo. Por lo tanto los discos duros ordinarios se pueden usar de manera segura en los vuelos. Los discos modernos incluyen sensores de temperatura y se ajustan a las condiciones del entorno. Los agujeros de ventilación se pueden ver en todos los discos (normalmente tienen una pegatina a su lado que advierte al usuario de no cubrir el agujero. El aire dentro del disco operativo está en constante movimiento siendo barrido por la fricción del plato. Este aire pasa a través de un filtro de recirculación interna para quitar cualquier contaminante que se hubiera quedado de su fabricación, alguna partícula o componente químico que de alguna forma hubiera entrado en el recinto, y cualquier partícula generada en una operación normal. Una humedad muy alta durante un periodo largo puede corroer los cabezales y los platos.
Cabezal de disco duro IBM sobre el plato del disco
Para los cabezales resistentes al magnetismo grandes (GMR) en particular, un incidente minoritario debido a la contaminación (que no se disipa la superficie magnética del disco) llega a dar lugar a un sobrecalentamiento temporal en el cabezal, debido a la fricción con la superficie del disco, y puede hacer que los datos no se puedan leer durante un periodo corto de tiempo hasta que la temperatura del cabezal se estabilice (también conocido como “aspereza térmica”, un problema que en parte puede ser tratado con el filtro electrónico apropiado de la señal de lectura).
Los componentes electrónicos del disco duro controlan el movimiento del accionador y la rotación del disco, y realiza lecturas y escrituras necesitadas por el controlador de disco. El firmware de los discos modernos es capaz de programar lecturas y escrituras de forma eficiente en la superficie de los discos y de reasignar sectores que hayan fallado.

Presente y futuro

Actualmente la nueva generación de discos duros utiliza la tecnología de grabación perpendicular (PMR), la cual permite mayor densidad de almacenamiento. También existen discos llamados "Ecológicos" (GP - Green Power), los cuales hacen un uso más eficiente de la energía.

Comparativa de Unidades de estado sólido y discos duros

Una unidad de estado sólido o SSD (acrónimo en inglés de solid-state drive) es un dispositivo de almacenamiento de datos que puede estar construido con memoria no volátil o con memoria volátil. Las no volatiles son unidades de estado sólido que como dispositivos electrónicos, están construidos en la actualidad con chips de memoria flash. No son discos, pero juegan el mismo papel a efectos prácticos aportando más ventajas que inconvenientes tecnológicos. Por ello se está empezando a vislumbrar en el mercado la posibilidad de que en el futuro ese tipo de unidades de estado sólido terminen sustituyendo al disco duro para implementar el manejo de memorias no volatiles en el campo de la ingeniería informática.
Esos soportes son muy rápidos ya que no tienen partes móviles y consumen menos energía. Todos esto les hace muy fiables y físicamente duraderos. Sin embargo su costo por GB es aún muy elevado respecto al mismo coste de GB en un formato de tecnología de Disco Duro siendo un índice muy importante cuando hablamos de las altas necesidades de almacenamiento que hoy se miden en orden de Terabytes.4
A pesar de ello la industria apuesta por este vía de solución tecnológica para el consumo doméstico5 aunque se ha de considerar que estos sistemas han de ser integrados correctamente6 tal y como se esta realizando en el campo de la alta computación.7 Unido a la reducción progresiva de costes quizás esa tecnología recorra el camino de aplicarse como método general de archivo de datos informáticos energéticamente respetuosos con el medio natural si optimiza su función lógica dentro de los sistemas operativos actuales.8
Los discos que no son discos: Las Unidades de estado sólido han sido categorizadas repetidas veces como "discos", cuando es totalmente incorrecto denominarlas así, puesto que a diferencia de sus predecesores, sus datos no se almacenan sobre superficies cilíndricas ni platos. Esta confusión conlleva habitualmente a creer que "SSD" significa Solid State Disk, en vez de Solid State Drive

Unidades híbridas

Las unidades híbridas son aquellas que combinan las ventajas de las unidades mecánicas convencionales con las de las unidades de estado sólido. Consisten en acoplar un conjunto de unidades de memoria flash dentro de la unidad mecánica, utilizando el área de estado sólido para el almacenamiento dinámico de datos de uso frecuente (determinado por el software de la unidad) y el área mecánica para el almacenamiento masivo de datos. Con esto se logra un rendimiento cercano al de unidades de estado sólido a un costo sustancialmente menor. En el mercado actual (2012), Seagate ofrece su modelo "Momentus XT" con esta tecnología.9

Fabricantes

Un Western Digital 3,5 pulgadas 250 GB SATA HDD.
Un Seagate 3,5 pulgadas 1 TB SATA HDD.
Los recursos tecnológicos y el saber hacer requeridos para el desarrollo y la producción de discos modernos implica que desde 2007, más del 98% de los discos duros del mundo son fabricados por un conjunto de grandes empresas: Seagate (que ahora es propietaria de Maxtor), Western Digital (propietaria de Hitachi, a la que a su vez fue propietaria de la antigua división de fabricación de discos de IBM) y Fujitsu, que sigue haciendo discos portátiles y discos de servidores, pero dejó de hacer discos para ordenadores de escritorio en 2001, y el resto lo vendió a Western Digital. Toshiba es uno de los principales fabricantes de discos duros para portátiles de 2,5 pulgadas y 1,8 pulgadas. TrekStor es un fabricante alemán que en 2009 tuvo problemas de insolvencia, pero que actualmente sigue en activo. ExcelStor es un pequeño fabricante chino de discos duros.
Decenas de ex-fabricantes de discos duros han terminado con sus empresas fusionadas o han cerrado sus divisiones de discos duros, a medida que la capacidad de los dispositivos y la demanda de los productos aumentó, los beneficios eran menores y el mercado sufrió un significativa consolidación a finales de los 80 y finales de los 90. La primera víctima en el mercado de los PC fue Computer Memories Inc.; después de un incidente con 20 MB defectuosos en discos en 1985, la reputación de CMI nunca se recuperó, y salieron del mercado de los discos duros en 1987. Otro notable fracaso fue el de MiniScribe, quien quebró en 1990: después se descubrió que tenía en marcha un fraude e inflaba el número de ventas durante varios años. Otras muchas pequeñas compañías (como Kalok, Microscience, LaPine, Areal, Priam y PrairieTek) tampoco sobrevivieron a la expulsión, y habían desaparecido para 1993; Micropolis fue capaz de aguantar hasta 1997, y JTS, un recién llegado a escena, duró sólo unos años y desapareció hacia 1999, aunque después intentó fabricar discos duros en India. Su vuelta a la fama se debió a la creación de un nuevo formato de tamaño de 3” para portátiles. Quantum e Integral también investigaron el formato de 3”, pero finalmente se dieron por vencidos. Rodime fue también un importante fabricante durante la década de los 80, pero dejó de hacer discos en la década de los 90 en medio de la reestructuración y ahora se concentra en la tecnología de la concesión de licencias; tienen varias patentes relacionadas con el formato de 3,5“.

Véase también

Fabricantes de discos duros

Referencias

Bibliografía

Ciriaco García de Celis (1994). «12.7: El disco duro del AT (IDE, MFM, BUS LOCAL).». El universo digital del IBM PC, AT y PS/2 (4ª edición). Facultad de Ciencias de Valladolid: Grupo Universitario de Informática.



Teclado (informática)

Saltar a: navegación, búsqueda
En informática un teclado es un periférico de entrada o dispositivo, en parte inspirado en el teclado de las máquinas de escribir, que utiliza una disposición de botones o teclas, para que actúen como palancas mecánicas o interruptores electrónicos que envían información a la computadora. Después de las tarjetas perforadas y las cintas de papel, la interacción a través de los teclados al estilo teletipo se convirtió en el principal medio de entrada para las computadoras. El teclado tiene entre 99 y 127 teclas aproximadamente, y está dividido en cuatro bloques:
1. Bloque de funciones: Va desde la tecla F1 a F12, en tres bloques de cuatro: de F1 a F4, de F5 a F8 y de F9 a F12. Funcionan de acuerdo al programa que esté abierto. Por ejemplo, en muchos programas al presionar la tecla F1 se accede a la ayuda asociada a ese programa.
2. Bloque alfanumérico: Está ubicado en la parte inferior del bloque de funciones, contiene los números arábigos del 1 al 0 y el alfabeto organizado como en una máquina de escribir, además de algunas teclas especiales.
3. Bloque especial: Está ubicado a la derecha del bloque alfanumérico, contiene algunas teclas especiales como ImprPant, Bloq de desplazamiento, pausa, inicio, fin, insertar, suprimir, RePág, AvPág, y las flechas direccionales que permiten mover el punto de inserción en las cuatro direcciones.
4. Bloque numérico: Está ubicado a la derecha del bloque especial, se activa al presionar la tecla Bloq Num, contiene los números arábigos organizados como en una calculadora con el fin de facilitar la digitación de cifras. Además contiene los signos de las cuatro operaciones básicas: suma +, resta -, multiplicación * y división /; también contiene una tecla de Intro o Enter.
Teclado de un terminal CT-1024
Teclado integrado de un Sinclair ZX Spectrum.
Teclado ajustable de Apple.
Teclado PC inalámbrico
Teclado SUN tipo 5

Contenido

Historia

Disposición de las teclas

La disposición de las teclas se remonta a las primeras máquinas de escribir, las cuales eran enteramente mecánicas. Al pulsar una letra en el teclado, se movía un pequeño martillo mecánico, que golpeaba el papel a través de una cinta impregnada en tinta. Al escribir con varios dedos de forma rápida, los martillos no tenían tiempo de volver a su posición por la frecuencia con la que cada letra aparecía en un texto. De esta manera la pulsación era más lenta con el fin de que los martillos se atascaran con menor frecuencia[cita requerida].
Sobre la distribución de los caracteres en el teclado surgieron dos variantes principales y secundarios: la francesa AZERTY y la alemana QWERTZ. Ambas se basaban en cambios en la disposición según las teclas más frecuentemente usadas en cada idioma. A los teclados en su versión para el idioma español además de la Ñ, se les añadieron los caracteres de acento agudo ( ´ ), grave ( ` ), la diérisis( ¨ ) y circunflejo ( ^ ), además de la cedilla ( Ç ) aunque estos caracteres son de mayor uso en francés, portugués o en catalán.
Cuando aparecieron las máquinas de escribir eléctricas, y después los ordenadores, con sus teclados también eléctricos, se consideró seriamente modificar la distribución de las letras en los teclados, colocando las letras más corrientes en la zona central; es el caso del Teclado Simplificado Dvorak. El nuevo teclado ya estaba diseñado y los fabricantes preparados para iniciar la fabricación. Sin embargo, el proyecto se canceló debido al temor de que los usuarios tuvieran excesivas incomodidades para habituarse al nuevo teclado, y que ello perjudicara la introducción de las computadoras personales, que por aquel entonces se encontraban en pleno auge.

Teclado QWERTY de 104 teclas con distribución Inglés de Estados Unidos
Teclado QWERTY de 105 teclas con distribución Español de Hispanoamérica

Primeros teclados

Además de teletipos y máquinas de escribir eléctricas como la IBM Selectric, los primeros teclados solían ser un terminal de computadora que se comunicaba por puerto serial con la computadora. Además de las normas de teletipo, se designó un estándar de comunicación serie, según el tiempo de uso basado en el juego de caracteres ANSI, que hoy sigue presente en las comunicaciones por módem y con impresora (las primeras computadoras carecían de monitor, por lo que solían comunicarse, o bien por luces en su panel de control, o bien enviando la respuesta a un dispositivo de impresión). Se usaba para ellos las secuencias de escape, que se generaban o bien por teclas dedicadas, o bien por combinaciones de teclas, siendo una de las más usadas la tecla Control.
La llegada de la computadora doméstica trae una inmensa variedad de teclados y de tecnologías y calidades (desde los muy reputados por duraderos del Dragon 32 a la fragilidad de las membranas de los equipos Sinclair), aunque la mayoría de equipos incorporan la placa madre bajo el teclado, y es la CPU o un circuito auxiliar (como el chip de sonido General Instrument AY-3-8910 en los MSX) el encargado de leerlo. Son casos contados los que recurren o soportan comunicación serial (curiosamente es la tecnología utilizada en el Sinclair Spectrum 128 para el keypad numérico). Sólo los MSX establecerán una norma sobre el teclado, y los diferentes clones del TRS-80 seguirán el diseño del clonado.

Generación 16 bits

Mientras que el teclado del IBM PC y la primera versión del IBM AT no tuvo influencia más allá de los clónicos PC, el Multifunción II (o teclado extendido AT de 101/102 teclas) aparecido en 1987 refleja y estandariza de facto el teclado moderno con cuatro bloques diferenciados : un bloque alfanumérico con al menos una tecla a cada lado de la barra espaciadora para acceder a símbolos adicionales; sobre él una hilera de 10 o 12 teclas de función; a la derecha un teclado numérico, y entre ambos grandes bloques, las teclas de cursor y sobre ellas varias teclas de edición. Con algunas variantes este será el esquema usado por los Atari ST, los Commodore Amiga (desde el Commodore Amiga 500), los Sharp X68000, las estaciones de trabajo SUN y Silicon Graphics y los Acorn Archimedes/Acorn RISC PC. Sólo los Mac siguen con el esquema bloque alfanumérico + bloque numérico, pero también producen teclados extendidos AT, sobre todo para los modelos con emulación PC por hardware.
Mención especial merece la serie 55 de teclados IBM, que ganaron a pulso la fama de "indestructibles", pues tras más de 10 años de uso continuo en entornos como las aseguradoras o la administración pública seguían funcionando como el primer día. [cita requerida]
Con la aparición del conector PS/2, varios fabricantes de equipos no PC proceden a incorporarlo en sus equipos. Microsoft, además de hacerse un hueco en la gama de calidad alta, y de presentar avances ergonómicos como el Microsoft Natural Keyboard, añade 3 nuevas teclas tras del lanzamiento de Windows 95. A la vez se generalizan los teclados multimedia que añaden teclas para controlar en el PC el volumen, el lector de CD-ROM o el navegador, incorporan en el teclado altavoces, calculadora, almohadilla sensible al tacto o bola trazadora

Teclados con USB

Aunque los teclados USB comienzan a verse al poco de definirse el estándar USB, es con la aparición del Apple iMac, que trae tanto teclado como mouse USB de serie cuando se estandariza el soporte de este tipo de teclado. Además tiene la ventaja de hacerlo independiente del hardware al que se conecta. El estándar define scancodes de 16 bits que se transmiten por la interfaz. Del 0 al 3 son códigos de error del protocolo, llamados NoEvent, ErrorRollOver, POSTFail, ErrorUndefined, respectivamente. Del 224 al 231 se reservan para las teclas modificadoras (LCtrl, LShift, LAlt, LGUI, RCtrl, RShift, RAlt, RGUI)
Existen distintas disposiciones de teclado, para que se puedan utilizar en diversos lenguajes. El tipo estándar de teclado inglés se conoce como QWERTY. Denominación de los teclados de computadora y máquinas de escribir que se utilizan habitualmente en los países occidentales, con alfabeto latino. Las siglas corresponden a las primeras letras del teclado, comenzando por la izquierda en la fila superior. El teclado en español o su variante latinoamericana son teclados QWERTY que se diferencian del inglés por presentar la letra "Ñ" en su distribución de teclas.
Se han sugerido distintas alternativas a la disposición de teclado QWERTY, indicando ventajas tales como mayores velocidades de tecleado. La alternativa más famosa es el Teclado Simplificado Dvorak.

Teclas inertes

Algunas lenguas incluyen caracteres adicionales al teclado inglés, como los caracteres acentuados. Teclear los caracteres acentuados resulta más sencillo usando las teclas inertes. Cuando se utiliza una de estas teclas, si se presiona la tecla correspondiente al acento deseado nada ocurre en la pantalla, por lo que, a continuación se debe presionar la tecla del carácter a acentuar. Esta combinación de teclas requiere que se teclee una secuencia aceptable. Por ejemplo, si se presiona la tecla inerte del acento (ej. ´) seguido de la letra A, obtendrá una "a" acentuada (á). Sin embargo, si se presiona una tecla inerte y a continuación la tecla T, no aparecerá nada en la pantalla o aparecerán los dos caracteres por separado (´t), a menos que la fuente particular para su idioma incluya la "t" acentuada.
Para teclear una marca de acento diacrítico, simplemente se presiona la tecla inerte del acento, seguida de la barra de espacio.

Tipos de teclado

Hubo y hay muchos teclados diferentes, dependiendo del idioma, fabricante… IBM ha soportado tres tipos de teclado: el XT, el AT y el MF-II.
El primero (1981) de éstos tenía 83 teclas, usaban es Scan Code set1, unidireccionales y no eran muy ergonómicos, ahora está obsoleto.
Más tarde (1984) apareció el teclado PC/AT con 84 teclas (una más al lado de SHIFT IZQ), ya es bidireccional, usa el Scan Code set 2 y al igual que el anterior cuenta con un conector DIN de 5 pines.
En 1987 IBM desarrolló el MF-II (Multifunción II o teclado extendido) a partir del AT. Sus características son que usa la misma interfaz que el AT, añade muchas teclas más, se ponen leds y soporta el Scan Code set 3, aunque usa por defecto el 2. De este tipo hay dos versiones, la americana con 101 teclas y la europea con 102.
Los teclados PS/2 son básicamente iguales a los MF-II. Las únicas diferencias son el conector mini-DIN de 6 pines (más pequeño que el AT) y más comandos, pero la comunicación es la misma, usan el protocolo AT. Incluso los ratones PS/2 usan el mismo protocolo. Estos teclados están quedando en desuso por los actuales teclados USB y los inalámbricos.
Hoy en día existen también los teclados en pantalla, también llamados teclados virtuales, que son (como su mismo nombre indica) teclados representados en la pantalla, que se utilizan con el ratón o con un dispositivo especial (podría ser un joystick). Estos teclados lo utilizan personas con discapacidades que les impiden utilizar adecuadamente un teclado físico.
Actualmente la denominación AT ó PS/2 sólo se refiere al conector porque hay una gran diversidad de ellos.

Estructura

Un teclado realiza sus funciones mediante un micro controlador. Estos micro controladores tienen un programa instalado para su funcionamiento, estos mismos programas son ejecutados y realizan la exploración matricial de las teclas cuando se presiona alguna, y así determinar cuales están pulsadas.
Para lograr un sistema flexible los microcontroladores no identifican cada tecla con su carácter serigrafiado en la misma sino que se adjudica un valor numérico a cada una de ellas que sólo tiene que ver con su posición física. El teclado latinoamericano sólo da soporte con teclas directas a los caracteres específicos del castellano, que incluyen dos tipos de acento, la letra eñe y los signos de exclamación e interrogación. El resto de combinaciones de acentos se obtienen usando una tecla de extensión de grafismos. Por lo demás el teclado latinoamericano está orientado hacia la programación, con fácil acceso al juego de símbolos de la norma ASCII.
Por cada pulsación o liberación de una tecla el micro controlador envía un código identificativo que se llama Scan Code. Para permitir que varias teclas sean pulsadas simultáneamente, el teclado genera un código diferente cuando una tecla se pulsa y cuando dicha tecla se libera. Si el micro controlador nota que ha cesado la pulsación de la tecla, el nuevo código generado (Break Code) tendrá un valor de pulsación incrementado en 128. Estos códigos son enviados al circuito micro controlador donde serán tratados gracias al administrador de teclado, que no es más que un programa de la BIOS y que determina qué carácter le corresponde a la tecla pulsada comparándolo con una tabla de caracteres que hay en el kernel, generando una interrupción por hardware y enviando los datos al procesador. El micro controlador también posee cierto espacio de memoria RAM que hace que sea capaz de almacenar las últimas pulsaciones en caso de que no se puedan leer a causa de la velocidad de tecleo del usuario. Hay que tener en cuenta, que cuando realizamos una pulsación se pueden producir rebotes que duplican la señal. Con el fin de eliminarlos, el teclado también dispone de un circuito que limpia la señal.
En los teclados AT los códigos generados son diferentes, por lo que por razones de compatibilidad es necesario traducirlos. De esta función se encarga el controlador de teclado que es otro microcontrolador (normalmente el 8042), éste ya situado en el PC. Este controlador recibe el Código de Búsqueda del Teclado (Kscan Code) y genera el propiamente dicho Código de Búsqueda. La comunicación del teclado es vía serie. El protocolo de comunicación es bidireccional, por lo que el servidor puede enviarle comandos al teclado para configurarlo, reiniciarlo, diagnósticos, etc.

Disposición del teclado

La disposición del teclado es la distribución de las teclas del teclado de una computadora, una máquina de escribir u otro dispositivo similar.
Existen distintas distribuciones de teclado, creadas para usuarios de idiomas diferentes. El teclado estándar en español corresponde al diseño llamado QWERTY. Una variación de este mismo es utilizado por los usuarios de lengua inglesa. Para algunos idiomas se han desarrollado teclados que pretenden ser más cómodos que el QWERTY, por ejemplo el Teclado Dvorak.
Las computadoras modernas permiten utilizar las distribuciones de teclado de varios idiomas distintos en un teclado que físicamente corresponde a un solo idioma. En sistemas operativos Windows, como también en Mac OS ó en Linux por ejemplo, pueden instalarse distribuciones adicionales desde el Panel de Control o de Herramientas de configuración o Personalización.
Existen programas como Microsoft Keyboard Layout Creator1 y KbdEdit,2 que hacen muy fácil la tarea de crear nuevas distribuciones, ya para satisfacer las necesidades particulares de un usuario, ya para resolver problemas que afectan a todo un grupo lingüístico. Estas distribuciones pueden ser modificaciones a otras previamente existentes (como el teclado latinoamericano extendido3 o el gaélico4 ), o pueden ser enteramente nuevas (como la distribución para el Alfabeto Fonético Internacional,5 o el panibérico6 ).

A primera vista en un teclado podemos notar una división de teclas, tanto por la diferenciación de sus colores, como por su distribución. Las teclas grisáceas sirven para distinguirse de las demás por ser teclas especiales (borrado, teclas de función, tabulación, tecla del sistema…). Si nos fijamos en su distribución vemos que están agrupadas en cuatro grupos:
  • Teclas de función: situadas en la primera fila de los teclados. Combinadas con otras teclas, nos proporcionan acceso directo a algunas funciones del programa en ejecución.
  • Teclas de edición: sirven para mover el cursor por la pantalla.
  • Teclas alfanuméricas: son las más usadas. Su distribución suele ser la de los teclados QWERTY, por herencia de la distribución de las máquinas de escribir. Reciben este nombre por ser la primera fila de teclas, y su orden es debido a que cuando estaban organizadas alfabéticamente la máquina tendía a engancharse, y a base de probar combinaciones llegaron a la conclusión de que así es como menos problemas daban. A pesar de todo esto, se ha comprobado que hay una distribución mucho más cómoda y sencilla, llamada Dvorak, pero en desuso debido sobre todo a la incompatibilidad con la mayoría de los programas que usamos.
  • Bloque numérico: situado a la derecha del teclado. Comprende los dígitos del sistema decimal y los símbolos de algunas operaciones aritméticas. Añade también la tecla especial Bloq Num, que sirve para cambiar el valor de algunas teclas para pasar de valor numérico a desplazamiento de cursor en la pantalla. el teclado numérico también es similar al de un calculadora cuenta con las 4 operaciones básicas que son + (suma), - (resta), * (multiplicación) y / (división).

Clasificación de teclados de computadoras

En el mercado hay una gran variedad de teclados. Según su forma física:
  • Teclado XT de 83 teclas: se usaba en el PC XT (8086/88).
  • Teclado AT de 83 teclas: usado con los PC AT (286/386).
  • Teclado expandido de 101/102 teclas: es el teclado actual, con un mayor número de teclas.
  • Teclado Windows de 104/105 teclas: el teclado anterior con 3 teclas adicionales para uso en Windows.
  • Teclado ergonómico: diseñados para dar una mayor comodidad para el usuario, ayudándole a tener una posición más relajada de los brazos.
  • Teclado multimedia: añade teclas especiales que llaman a algunos programas en el computador, a modo de acceso directo, como pueden ser el programa de correo electrónico, la calculadora, el reproductor multimedia, etc.
  • Teclado inalámbrico: suelen ser teclados comunes donde la comunicación entre el computador y el periférico se realiza a través de rayos infrarrojos, ondas de radio o mediante bluetooth.
  • Teclado flexible: Estos teclados son de plástico suave o silicona que se puede doblar sobre sí mismo. Durante su uso, estos teclados pueden adaptarse a superficies irregulares, y son más resistentes a los líquidos que los teclados estándar. Estos también pueden ser conectados a dispositivos portátiles y teléfonos inteligentes. Algunos modelos pueden ser completamente sumergidos en agua, por lo que hospitales y laboratorios los usan, ya que pueden ser desinfectados.7
Según la tecnología de sus teclas se pueden clasificar como teclados de cúpula de goma, teclados de membrana: teclados capacitativos y teclados de contacto metálico.

Accesos directos en el teclado

Véase también

Fuentes y referencias

  1. «Microsoft Keyboard Layout Creator». Consultado el 26-07-2007.
  2. «KbdEdit». Consultado el 04-10-2007.
  3. «Distribuciones de Teclado para Windows: latinoamericano extendido.». Consultado el 26-03-2009.
  4. «Gaelic Keyboards for MS Windows». Consultado el 26-03-2009.
  5. «IPA Keyboard Layout for Windows». Consultado el 26-03-2009.
  6. «Distribuciones de Teclado para Windows: panibérico.». Consultado el 26-03-2009.
  7. Teclado flexible, lavable y a prueba de todo. Consultado el 15 de diciembre de 2009
  8.  
  9.  
  10.  
  11.  
  12.  

    Ratón (informática)

    Saltar a: navegación, búsqueda
    Ratón con cable y rueda.
    Ratón Logitech G5 para videojugadores.
    El ratón o mouse (del inglés, pronunciado [maʊs]) es un dispositivo apuntador utilizado para facilitar el manejo de un entorno gráfico en una computadora. Generalmente está fabricado en plástico y se utiliza con una de las manos. Detecta su movimiento relativo en dos dimensiones por la superficie plana en la que se apoya, reflejándose habitualmente a través de un puntero o flecha en el monitor.
    Hoy en día es un elemento imprescindible en un equipo informático para la mayoría de las personas, y pese a la aparición de otras tecnologías con una función similar, como la pantalla táctil, la práctica ha demostrado que tendrá todavía muchos años de vida útil. No obstante, en el futuro podría ser posible mover el cursor o el puntero con los ojos o basarse en el reconocimiento de voz.

    Contenido

    El nombre

    La forma del dispositivo originó su nombre.
    Aunque cuando se patentó recibió el nombre de «X-Y Position Indicator for a Display System» (Indicador de posición X-Y para un sistema con pantalla), el más usado nombre de ratón (mouse en inglés) se lo dio el equipo de la Universidad de Stanford durante su desarrollo, ya que su forma y su cola (cable) recuerdan a un ratón.
    En América predomina el término inglés mouse (plural mouses y no mice1 ) mientras que en España se utiliza prácticamente de manera exclusiva el calco semántico «ratón». El Diccionario panhispánico de dudas recoge ambos términos, aunque considera que, como existe el calco semántico, el anglicismo es innecesario.2 El DRAE únicamente acepta la entrada ratón para este dispositivo informático, pero indica que es un españolismo.3 El Diccionario de americanismos de la ASALE, publicado en 2010, consigna el anglicismo mouse.4

    Hoy en día

    Habitualmente se compone de al menos dos botones y otros dispositivos opcionales como una «rueda», más otros botones secundarios o de distintas tecnologías como sensores del movimiento que pueden mejorar o hacer más cómodo su uso.
    Se suele presentar para manejarse con ambas manos por igual, pero algunos fabricantes también ofrecen modelos únicamente para usuarios diestros o zurdos. Los sistemas operativos pueden también facilitar su manejo a todo tipo de personas, generalmente invirtiendo la función de los botones.
    En los primeros años de la informática, el teclado era casi siempre la forma más popular como dispositivo para la entrada de datos o control de la computadora. La aparición y éxito del ratón, además de la posterior evolución de los sistemas operativos, logró facilitar y mejorar la comodidad, aunque no relegó el papel primordial del teclado. Aún hoy en día, pueden compartir algunas funciones dejando al usuario que escoja la opción más conveniente a sus gustos o tareas.

    Historia

    Fue diseñado por Douglas Engelbart y Bill English durante los años 60 en el Stanford Research Institute, un laboratorio de la Universidad de Stanford, en pleno Silicon Valley en California. Más tarde fue mejorado en los laboratorios de Palo Alto de la compañía Xerox (conocidos como Xerox PARC). Su invención no fue un hecho banal ni fortuito, sino que surgió dentro de un proyecto importante que buscaba aumentar el intelecto humano mejorando la comunicación entre el hombre y la máquina. Con su aparición, logró también dar el paso definitivo a la aparición de los primeros entornos o interfaces gráficas de usuario.

    La primera maqueta

    Copia del primer prototipo.
    La primera maqueta se construyó de manera artesanal de madera, y se patentó con el nombre de "X-Y Position Indicator for a Display System".
    A pesar de su aspecto arcaico, su funcionamiento básico sigue siendo igual hoy en día. Tenía un aspecto de adoquín, encajaba bien en la mano y disponía de dos ruedas metálicas que, al desplazarse por la superficie, movían dos ejes: uno para controlar el movimiento vertical del cursor en pantalla y el otro para el sentido horizontal, contando además con un botón rojo en su parte superior.
    Por primera vez se lograba un intermediario directo entre una persona y la computadora, era algo que, a diferencia del teclado, cualquiera podía aprender a manejar sin apenas conocimientos previos. En esa época además la informática todavía estaba en una etapa primitiva: ejecutar un simple cálculo necesitaba de instrucciones escritas en un lenguaje de programación.

    Presentación

    ¿Cómo se captura el movimiento de un ratón mecánico estándar?
    1: Al arrastrarlo sobre la superficie gira la bola,
    2: ésta a su vez mueve los rodillos ortogonales,
    3: éstos están unidos a unos discos de codificación óptica, opacos pero perforados,
    4: dependiendo de su posición pueden dejar pasar o interrumpir señales infrarrojas de un diodo LED.
    5: Estos pulsos ópticos son captados por sensores que obtienen así unas señales digitales de la velocidad vertical y horizontal actual para trasmitirse finalmente a la computadora.
    En San Francisco, a finales de 1968 se presentó públicamente el primer modelo oficial. Durante hora y media además se mostró una presentación multimedia de un sistema informático interconectado en red de computadoras y también por primera vez se daba a conocer un entorno gráfico con el sistema de ventanas que luego adoptarían la práctica totalidad de sistemas operativos modernos. En ese momento además, se exhibió hipermedia, un mecanismo para navegar por Internet y usar videoconferencia.
    Engelbart realmente se adelantó varias décadas a un futuro posible, ya desde 1951 había empezado a desarrollar las posibilidades de conectar computadoras en redes, cuando apenas existían varias docenas y bastante primitivas, entre otras ideas como el propio correo electrónico, del que sería su primer usuario. Pensó que la informática podía usarse para mucho más que cálculos matemáticos, y el ratón formaba parte de este ambicioso proyecto, que pretendía aumentar la inteligencia colectiva fundando el Augmentation Research Center (Centro para la investigación del incremento) en la Universidad de Stanford.
    Y pese a las esperanzas iniciales de Engelbart de que fuera la punta del iceberg para un desarrollo de distintos componentes informáticos similares, una década después era algo único, revolucionario, que todavía no había cobrado popularidad. De hecho varios de los conceptos e ideas surgidos aún hoy en día han conseguido éxito. Engelbart tampoco logró una gran fortuna, la patente adjudicaba todos los derechos a la Universidad de Stanford y él recibió un cheque de unos 10000 dólares.

    El éxito de Apple

    El 27 de abril de 1981 se lanzaba al mercado la primera computadora con ratón incluido: Xerox Star 8010, fundamental para la nueva y potente interfaz gráfica que dependía de este periférico, que fue a su vez, otra revolución. Posteriormente, surgieron otras computadoras que también incluyeron el periférico, algunas de ellas fueron la Commodore Amiga, el Atari ST, y la conocida Apple Lisa. Dos años después, Microsoft, que había tenido acceso al ratón de Xerox en sus etapas de prototipo, dio a conocer su propio diseño disponible además con las primeras versiones del procesador de texto Microsoft Word. Tenía dos botones en color verde y podía adquirirse por 195 dólares, pero su precio elevado para entonces y el no disponer de un sistema operativo que realmente lo aprovechara, hizo que pasara completamente inadvertido.
    No fue hasta la aparición del Macintosh en 1984 cuando este periférico se popularizó. Su diseño y creación corrió a cargo de nuevo de la Universidad de Stanford, cuando Apple en 1980 pidió a un grupo de jóvenes un periférico seguro, barato y que se pudiera producir en serie. Partían de un ratón basado en tecnología de Xerox de un coste alrededor de los 400 dólares, con un funcionamiento regular y casi imposible de limpiar. El presidente, Steve Jobs, quería un precio entre los 10 y los 35 dólares.
    Si bien existen muchas variaciones posteriores, algunas innovaciones recientes y con éxito han sido el uso de una rueda central o lateral, el sensor de movimiento óptico por diodo LED, ambas introducidas por Microsoft en 1996 y 1999 respectivamente, o el sensor basado en un láser no visible del fabricante Logitech.
    En la actualidad, la marca europea Logitech es una de las mayores empresas dedicadas a la fabricación y desarrollo de estos periféricos, más de la mitad de su producción la comercializa a través de terceras empresas como IBM, Hewlett-Packard, Compaq o Apple.

    Funcionamiento

    Imagen habitual de un puntero movido por la pantalla usando un ratón.
    Su funcionamiento principal depende de la tecnología que utilice para capturar el movimiento al ser desplazado sobre una superficie plana o alfombrilla de ratón especial para ratón, y transmitir esta información para mover una flecha o puntero sobre el monitor de la computadora. Dependiendo de las tecnologías empleadas en el sensor del movimiento o por su mecanismo y del método de comunicación entre éste y la computadora, existen multitud de tipos o familias.
    El objetivo principal o más habitual es seleccionar distintas opciones que pueden aparecer en la pantalla, con uno o dos clic, pulsaciones, en algún botón o botones. Para su manejo el usuario debe acostumbrarse tanto a desplazar el puntero como a pulsar con uno o dos clics para la mayoría de las tareas.
    Con el avance de las nuevas computadoras, el ratón se ha convertido en un dispositivo esencial a la hora de jugar, destacando no solo para seleccionar y accionar objetos en pantalla en juegos estratégicos, sino para cambiar la dirección de la cámara o la dirección de un personaje en juegos de primera o tercera persona. Comúnmente en la mayoría de estos juegos, los botones del ratón se utilizan para accionar las armas u objetos seleccionados y la rueda del ratón sirve para recorrer los objetos o armas de nuestro inventario.

    Tipos o modelos

    Por mecanismo

    Mecánicos

    Tienen una gran esfera de plástico o goma, de varias capas, en su parte inferior para mover dos ruedas que generan pulsos en respuesta al movimiento de éste sobre la superficie. Una variante es el modelo de Honeywell que utiliza dos ruedas inclinadas 90 grados entre ellas en vez de una esfera.
    La circuitería interna cuenta los pulsos generados por la rueda y envía la información a la computadora, que mediante software procesa e interpreta.
    Parte inferior de un ratón con cable y sensor óptico.

    Ópticos

    Es una variante que carece de la bola de goma que evita el frecuente problema de la acumulación de suciedad en el eje de transmisión, y por sus características ópticas es menos propenso a sufrir un inconveniente similar. Se considera uno de los más modernos y prácticos actualmente. Puede ofrecer un límite de 800 ppp, como cantidad de puntos distintos que puede reconocer en 2,54 centímetros (una pulgada); a menor cifra peor actuará el sensor de movimientos. Su funcionamiento se basa en un sensor óptico que fotografía la superficie sobre la que se encuentra y detectando las variaciones entre sucesivas fotografías, se determina si el ratón ha cambiado su posición. En superficies pulidas o sobre determinados materiales brillantes, el ratón óptico causa movimiento nervioso sobre la pantalla, por eso se hace necesario el uso de una alfombrilla de ratón o superficie que, para este tipo, no debe ser brillante y mejor si carece de grabados multicolores que puedan "confundir" la información luminosa devuelta.

    Láser

    Este tipo es más sensible y preciso, haciéndolo aconsejable especialmente para los diseñadores gráficos y los jugadores de videojuegos. También detecta el movimiento deslizándose sobre una superficie horizontal, pero el haz de luz de tecnología óptica se sustituye por un láser con resoluciones a partir de 2000 ppp, lo que se traduce en un aumento significativo de la precisión y sensibilidad.
    Un modelo trackball de Logitech.

    Trackball

    El concepto de trackball es una idea que parte del hecho: se debe mover el puntero, no el dispositivo, por lo que se adapta para presentar una bola, de tal forma que cuando se coloque la mano encima se pueda mover mediante el dedo pulgar, sin necesidad de desplazar nada más ni toda la mano como antes. De esta manera se reduce el esfuerzo y la necesidad de espacio, además de evitarse un posible dolor de antebrazo por el movimiento de éste. A algunas personas, sin embargo, no les termina de resultar realmente cómodo. Este tipo ha sido muy útil por ejemplo en la informatización de la navegación marítima.

    Por conexión

    Por cable

    Es el formato más popular y más económico, sin embargo existen multitud de características añadidas que pueden elevar su precio, por ejemplo si hacen uso de tecnología láser como sensor de movimiento. Actualmente se distribuyen con dos tipos de conectores posibles, tipo USB y PS/2; antiguamente también era popular usar el puerto serie.
    Es el preferido por los videojugadores experimentados, ya que la velocidad de transmisión de datos por cable entre el ratón y la computadora es óptima en juegos que requieren de una gran precisión.
    Un modelo inalámbrico con rueda y cuatro botones, y la base receptora de la señal.

    Inalámbrico

    En este caso el dispositivo carece de un cable que lo comunique con la computadora (ordenador), en su lugar utiliza algún tipo de tecnología inalámbrica. Para ello requiere un receptor que reciba la señal inalámbrica que produce, mediante baterías, el ratón. El receptor normalmente se conecta a la computadora a través de un puerto USB o PS/2. Según la tecnología inalámbrica usada pueden distinguirse varias posibilidades:
  13. Radio Frecuencia (RF): Es el tipo más común y económico de este tipo de tecnologías. Funciona enviando una señal a una frecuencia de 2.4Ghz, popular en la telefonía móvil o celular, la misma que los estándares IEEE 802.11b y IEEE 802.11g. Es popular, entre otras cosas, por sus pocos errores de desconexión o interferencias con otros equipos inalámbricos, además de disponer de un alcance suficiente: hasta unos 10 metros.
  • Infrarrojo (IR): Esta tecnología utiliza una señal de onda infrarroja como medio de trasmisión de datos, popular también entre los controles o mandos remotos de televisiones, equipos de música o en telefonía celular. A diferencia de la anterior, tiene un alcance medio inferior a los 3 metros, y tanto el emisor como el receptor deben estar en una misma línea visual de contacto directo ininterrumpido para que la señal se reciba correctamente. Por ello su éxito ha sido menor, llegando incluso a desaparecer del mercado.
  • Bluetooth (BT): Bluetooth es la tecnología más reciente como transmisión inalámbrica (estándar IEEE 802.15.1), que cuenta con cierto éxito en otros dispositivos. Su alcance es de unos 10 metros o 30 pies (que corresponde a la Clase 2 del estándar Bluetooth).

El controlador

Es, desde hace un tiempo, común en cualquier equipo informático, de tal manera que todos los sistemas operativos modernos suelen incluir de serie un software controlador (driver) básico para que éste pueda funcionar de manera inmediata y correcta. No obstante, es normal encontrar software propio del fabricante que puede añadir una serie de funciones opcionales, o propiamente los controladores si son necesarios.
Modelo Mighty Mouse de Apple.

Uno, dos o tres botones

Hasta mediados de 2005, la conocida empresa Apple, para sus sistemas Mac apostaba por un ratón de un sólo botón, pensado para facilitar y simplificar al usuario las distintas tareas posibles. Actualmente ha lanzado un modelo con dos botones simulados virtuales con sensores debajo de la cubierta plástica, dos botones laterales programables, y una bola para mover el puntero, llamado Mighty Mouse.
Modelo inalámbrico con cuatro botones.
En Windows, lo más habitual es el uso de dos o tres botones principales. En sistemas UNIX como GNU/Linux que utilicen entorno gráfico (X Window), era habitual disponer de tres botones (para facilitar la operación de copiar y pegar datos directamente). En la actualidad la funcionalidad del tercer botón queda en muchos casos integrada en la rueda central de tal manera que además de poder girarse, puede pulsarse.
Hoy en día cualquier sistema operativo moderno puede hacer uso de hasta estos tres botones distintos e incluso reconocer más botones extra a los que el software reconoce, y puede añadir distintas funciones concretas, como por ejemplo asignar a un cuarto y quinto botón la operación de copiar y pegar texto.
La sofisticación ha llegado a extremos en algunos casos, por ejemplo el MX610 de Logitech, lanzado en septiembre de 2005. Preparado anatómicamente para diestros, dispone de hasta 10 botones.

Problemas frecuentes

  • Puntero que se atasca en la pantalla: es el fallo más frecuente, se origina a causa de la acumulación de suciedad, frenando o dificultando el movimiento del puntero en la pantalla. Puede retirarse fácilmente la bola de goma por la parte inferior y así acceder a los ejes de plástico para su limpieza, usando un pequeño pincel de cerdas duras. Para retardar la aparición de suciedad en el interior del ratón es recomendable usar una alfombrilla de ratón. Este problema es inexistente con tecnología óptica, ya que no requiere partes mecánicas para detectar el desplazamiento. Es uno de los principales motivos de su éxito.
  • Pérdida de sensibilidad o contacto de los botones: se manifiesta cuando se pulsa una vez un botón y la computadora lo recibe como ninguno, dos o más clics consecutivos, de manera errónea. Esto se debe al desgaste de las piezas de plástico que forman parte de los botones del ratón, que ya no golpean o pulsan correctamente sobre el pulsador electrónico. En caso de uso frecuente, el desgaste es normal, y suele darse a una cifra inferior al milímetro por cada 5 años de vida útil.
  • Dolores musculares causados por el uso del ratón: si el uso de la computadora es frecuente, es importante usar un modelo lo más ergonómico posible, ya que puede acarrear problemas físicos en la muñeca o brazo del usuario. Esto es por la posición totalmente plana que adopta la mano, que puede resultar forzada, o puede también producirse un fuerte desgaste del huesecillo que sobresale de la muñeca, hasta el punto de considerarse una enfermedad profesional. Existen alfombrillas especialmente diseñadas para mejorar la comodidad al usar el ratón.

Véase también

Referencias

  1. el castellano.org, Los hispanohablantes y la norma lingüística, Ricardo Soca, Ponencia en el V Congreso Latinoamericano de Traducción e Interpretación, Mayo 2010.
  2. «La existencia de este calco hace innecesario el uso en español del término inglés.». "Ratón". DPD, Asociación de Academias de la Lengua (ASALE), 2005, pág. 556.
  3. Diccionario de la Real Academia Española, ratón, artículo enmendado.
  4. Asociación de Academias de la Lengua Española (2010). Diccionario de americanismos. Perú. pp. 1474. ISBN 978-84-294-9550-8. «pequeño aparato manual de la computadora cuya función es mover el cursor de la pantalla para dar órdenes»